tests/test.spatial.interface.R

rm(list = ls())
graphics.off()
library(ngme)
library(INLA)
library(fields)
library(ggplot2)
library(fields)
library(gridExtra)
library(RandomFields)

#Load data
data(weather)
loc <- weather[,3:4]
pres <- weather[,1]
temp <- weather[,2]
n.obs <- length(pres)
data <- data.frame(weather)

df = data.frame(x = loc[,1],y=loc[,2],z=pres)
p1 <- ggplot(df) + geom_point(aes(x,y,colour=z), size=1, alpha=1) + scale_colour_gradientn(colours=tim.colors(100)) 
df = data.frame(x = loc[,1],y=loc[,2],z=temp)
p2 <- ggplot(df) + geom_point(aes(x,y,colour=z), size=1, alpha=1) + scale_colour_gradientn(colours=tim.colors(100)) 
grid.arrange(p1,p2,ncol=2)


#Build spatial mesh
mesh <- inla.mesh.create.helper( loc,
                                 cutoff=0,
                                 max.edge=c(1,1),
                                 offset=c(-0.1,-0.1),
                                 min.angle=20)


#Fit gaussian model to pressure data
res.est.pres <- ngme.spatial(pres ~ 1,
                              process = c("Normal"),
                              error = "Normal",
                              data = data,
                              location.names = c("lon","lat"),
                              silent = FALSE,
                              nIter = 100,
                              mesh = mesh,
                              controls = list(learning.rate = 0.9,
                                              polyak.rate = 0.1,
                                              nBurnin = 100,
                                              nSim = 4,
                                              step0 = 1,
                                              alpha = 0.3))

cat("beta = ", res.est.pres$fixed_est, "kappa = ", res.est.pres$operator_kappa,
    "tau = ", res.est.pres$operator_tau, "sigma.e = ", res.est.pres$meas_error_sigma)


#define locations where we want predict the process
proj <- inla.mesh.projector(mesh,dims=c(80,80))
data.pred = data.frame(lon = proj$lattice$loc[,1],
                       lat = proj$lattice$loc[,2])

#compute prediction
res.pred.pres <-predict(res.est.pres, data = data.pred)
 
df = data.frame(x = loc[,1],y=loc[,2],z=pres)
p1 <- ggplot(df) + geom_point(aes(x,y,colour=z), size=1, alpha=1) + scale_colour_gradientn(colours=tim.colors(100)) 
df <- expand.grid(x= proj$x, y = proj$y)
df$z <- res.pred.pres$predictions$X.summary[[1]]$Mean
p2 <- ggplot(df, aes(x, y, fill = z)) + geom_raster() + scale_fill_gradientn(colours=tim.colors(100)) 
grid.arrange(p1,p2,ncol=2)


#compute accuracy measure from leave-one-out crossvalidation
res.cv.pres <-predict(res.est.pres, type = "LOOCV")

cat("mae = ", res.cv.pres$median.mae.mean.predictor,"crps =",res.cv.pres$median.crps)
davidbolin/ngme documentation built on Dec. 5, 2023, 11:48 p.m.