R/runTSNE.R

Defines functions runTSNE .calculate_tsne

Documented in runTSNE

#' Perform t-SNE on cell-level data
#'
#' Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCellExperiment object.
#'
#' @param x For \code{calculateTSNE}, a numeric matrix of log-expression values where rows are features and columns are cells.
#' Alternatively, a \linkS4class{SummarizedExperiment} or \linkS4class{SingleCellExperiment} containing such a matrix.
#'
#' For \code{runTSNE}, a \linkS4class{SingleCellExperiment} object.
#' @param ncomponents Numeric scalar indicating the number of t-SNE dimensions to obtain.
#' @inheritParams runPCA
#' @param normalize Logical scalar indicating if input values should be scaled for numerical precision, see \code{\link[Rtsne]{normalize_input}}.
#' @param perplexity Numeric scalar defining the perplexity parameter, see \code{?\link[Rtsne]{Rtsne}} for more details.
#' @param theta Numeric scalar specifying the approximation accuracy of the Barnes-Hut algorithm, see \code{\link[Rtsne]{Rtsne}} for details.
#' @param ... For the \code{calculateTSNE} generic, additional arguments to pass to specific methods.
#' For the ANY method, additional arguments to pass to \code{\link[Rtsne]{Rtsne}}.
#' For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
#'
#' For \code{runTSNE}, additional arguments to pass to \code{calculateTSNE}.
#' @param num_threads Integer scalar specifying the number of threads to use in \code{\link[Rtsne]{Rtsne}}.
#' If \code{NULL} and \code{BPPARAM} is a \linkS4class{MulticoreParam}, it is set to the number of workers in \code{BPPARAM};
#' otherwise, the \code{\link[Rtsne]{Rtsne}} defaults are used.
#' @param external_neighbors Logical scalar indicating whether a nearest neighbors search should be computed externally with \code{\link{findKNN}}.
#' @param BNPARAM A \linkS4class{BiocNeighborParam} object specifying the neighbor search algorithm to use when \code{external_neighbors=TRUE}.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying how the neighbor search should be parallelized when \code{external_neighbors=TRUE}.
#' @param pca Logical scalar indicating whether a PCA step should be performed inside \code{\link[Rtsne]{Rtsne}}.
#' @param use_fitsne Logical scalar indicating whether \code{\link[snifter]{fitsne}} should be used to perform t-SNE.
#' @param use_densvis Logical scalar indicating whether \code{\link[densvis]{densne}} should be used to perform density-preserving t-SNE.
#' @param dens_frac,dens_lambda See \code{\link[densvis]{densne}}
#'
#' @inheritSection calculatePCA Feature selection
#' @inheritSection calculatePCA Using reduced dimensions
#' @inheritSection calculatePCA Using alternative Experiments
#' 
#' @return 
#' For \code{calculateTSNE}, a numeric matrix is returned containing the t-SNE coordinates for each cell (row) and dimension (column).
#' 
#' For \code{runTSNE}, a modified \code{x} is returned that contains the t-SNE coordinates in \code{\link{reducedDim}(x, name)}.
#'
#' @details 
#' The function \code{\link[Rtsne]{Rtsne}} is used internally to compute the t-SNE. 
#' Note that the algorithm is not deterministic, so different runs of the function will produce differing results. 
#' Users are advised to test multiple random seeds, and then use \code{\link{set.seed}} to set a random seed for replicable results. 
#'
#' The value of the \code{perplexity} parameter can have a large effect on the results.
#' By default, the function will set a \dQuote{reasonable} perplexity that scales with the number of cells in \code{x}.
#' (Specifically, it is the number of cells divided by 5, capped at a maximum of 50.)
#' However, it is often worthwhile to manually try multiple values to ensure that the conclusions are robust.
#'
#' If \code{external_neighbors=TRUE}, the nearest neighbor search step will use a different algorithm to that in the \code{\link[Rtsne]{Rtsne}} function.
#' This can be parallelized or approximate to achieve greater speed for large data sets.
#' The neighbor search results are then used for t-SNE via the \code{\link[Rtsne]{Rtsne_neighbors}} function.
#' 
#' If \code{dimred} is specified, the PCA step of the \code{Rtsne} function is automatically turned off by default.
#' This presumes that the existing dimensionality reduction is sufficient such that an additional PCA is not required.
#'
#' @references
#' van der Maaten LJP, Hinton GE (2008).
#' Visualizing High-Dimensional Data Using t-SNE.
#' \emph{J. Mach. Learn. Res.} 9, 2579-2605.
#'
#' @name runTSNE
#' @seealso 
#' \code{\link[Rtsne]{Rtsne}}, for the underlying calculations.
#' 
#' \code{\link{plotTSNE}}, to quickly visualize the results.
#'
#' @author Aaron Lun, based on code by Davis McCarthy
#'
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#'
#' example_sce <- runTSNE(example_sce)
#' reducedDimNames(example_sce)
#' head(reducedDim(example_sce))
NULL

#' @importFrom BiocNeighbors KmknnParam findKNN 
#' @importFrom BiocParallel SerialParam
.calculate_tsne <- function(x, ncomponents = 2, ntop = 500, 
    subset_row = NULL, scale=FALSE, transposed=FALSE,
    perplexity=NULL, normalize = TRUE, theta = 0.5, 
    num_threads=NULL, ...,
    external_neighbors=FALSE, BNPARAM = KmknnParam(), BPPARAM = SerialParam(),
    use_fitsne = FALSE, use_densvis=FALSE, dens_frac = 0.3, dens_lambda = 0.1)
{ 
    if (!transposed) {
        x <- .get_mat_for_reddim(x, subset_row=subset_row, ntop=ntop, scale=scale) 
    }
    x <- as.matrix(x) 

    if (is.null(perplexity)) {
        perplexity <- min(50, floor(nrow(x) / 5))
    }

    args <- list(perplexity=perplexity, dims = ncomponents, theta = theta, ...)
    num_threads <- .choose_nthreads(num_threads, BPPARAM)
    if (!is.null(num_threads)) {
        args$num_threads <- num_threads
    }

    if (!external_neighbors || theta == 0) {
        if (use_fitsne) {
            if (!requireNamespace("snifter")) {
                stop("snifter is required for FI-tSNE.")
            }
            if (use_densvis) {
                warning("Can't use_fitsne and use_densvis at the same time; using fitsne")
            }
            if (normalize) {
                x <- Rtsne::normalize_input(x)
            }
            args$n_components <- as.integer(args$dims)
            args$dims <- NULL
            args$n_jobs <- num_threads
            tsne_out <- do.call(
                snifter::fitsne,
                c(list(x), args, simplified = TRUE)
            )
        } else {
            if (use_densvis) {
                if (!requireNamespace("densvis", quietly = TRUE)) {
                    stop("densvis is not installed.")
                }
                args$dens_frac <- dens_frac
                args$dens_lambda <- dens_lambda
                tsne_out <- do.call(
                    densvis::densne,
                    c(list(x, check_duplicates = FALSE, normalize = normalize), args)
                )
            } else {
                tsne_out <- do.call(
                    Rtsne::Rtsne,
                    c(list(x, check_duplicates = FALSE, normalize = normalize), args)
                )$Y
            }
        }
    } else {
        if (normalize) {
            x <- Rtsne::normalize_input(x)
        }
        nn_out <- findKNN(x,
            k = floor(3*perplexity), BNPARAM = BNPARAM, BPPARAM = BPPARAM
        )
        tsne_out <- do.call(
            Rtsne::Rtsne_neighbors,
            c(list(nn_out$index, nn_out$distance), args)
        )$Y
    }
    colnames(tsne_out) <- paste0("TSNE", seq_len(ncol(tsne_out)))
    tsne_out
}

#' @export
#' @rdname runTSNE
setMethod("calculateTSNE", "ANY", .calculate_tsne)

#' @export
#' @rdname runTSNE
#' @importFrom SummarizedExperiment assay
setMethod("calculateTSNE", "SummarizedExperiment", function(x, ..., exprs_values="logcounts", assay.type=exprs_values) {
    .calculate_tsne(assay(x, assay.type), ...)
})

#' @export
#' @rdname runTSNE
setMethod("calculateTSNE", "SingleCellExperiment", function(x, ..., pca=is.null(dimred), 
    exprs_values="logcounts", dimred=NULL, n_dimred=NULL, assay.type=exprs_values)
{
    if ("use_dimred" %in% names(list(...))) {
        warning("`use_dimred` is unused; use `dimred` instead.")
    }
    mat <- .get_mat_from_sce(x, assay.type=assay.type, dimred=dimred, n_dimred=n_dimred)
    .calculate_tsne(mat, transposed=!is.null(dimred), pca=pca, ...)
})

#' @export
#' @rdname runTSNE
#' @importFrom SingleCellExperiment reducedDim<- 
runTSNE <- function(x, ..., altexp=NULL, name="TSNE") {
    if (!is.null(altexp)) {
        y <- altExp(x, altexp)
    } else {
        y <- x
    }
    reducedDim(x, name) <- calculateTSNE(y, ...)
    x
}
davismcc/scater documentation built on July 19, 2024, 2:01 a.m.