R/TMB1964r.R

#' @name TMB1964r
#'
#' @md
#'
#' @title Data of Tulving, Mandler, & Baumal, 1964 (reproduction of 2021)
#'
#' @description The data comes from \insertCite{b21;textual}{superb}. It is a near exact 
#' replication of the original study from \insertCite{tmb64}{superb}.
#' 
#' The design is a (7) x 4 with:  7 levels of stimulus duration (within-subject) and
#' 4 between-subject conditions.
#' Additional variables included in the reproduction is the primary language of the participant
#' in which he/she participated (mainly francophones and anglophones; 
#' and the gender (mainly male and female).
#'
#' @docType data
#'
#' @usage data(TMB1964r)
#'
#' @format An object of class data.frame.
#'
#' @keywords datasets
#'
#' @references 
#' \insertAllCited{}
#'
#' @examples
#' library(ggplot2)
#'
#' data(TMB1964r)
#' 
#' options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
#'
#' # general plot ignoring covariates sex and languages with only defaults
#' # We illustrate correlation- and difference-adjusted 95% confidence intervals of the mean
#' superb(
#'     crange(T1, T7) ~ Condition,
#'     TMB1964r,
#'     WSFactors = "T(7)",      # the within-subject factor (spanning 7 columns)
#'     adjustments = list(purpose="difference", decorrelation="CM"),
#'     plotStyle = "line"
#' )
#' 
#' # We add directives for the error bars (thick), for the points (larger) and for the lines (thick)
#' plt <- superb(
#'     crange(T1, T7) ~ Condition,
#'     TMB1964r,
#'     WSFactors = "T(7)",
#'     adjustments = list(purpose="difference", decorrelation="CM"),
#'     plotStyle = "line", 
#'     errorbarParams = list(width = 0.5, linewidth=1.25, position = position_dodge(.5) ),
#'     pointParams = list(size=2.5, position = position_dodge(.5)),
#'     lineParams = list(linewidth=1.25)
#' )
#' plt
#' 
#' # Additional directives to set manually the colors, shapes, thick marks and labels.
#' plt + 
#' scale_colour_manual( 
#'     labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#'     values = c("blue", "black", "purple", "red")) +
#' scale_shape_manual( 
#'     labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#'     values = c("circle", "triangle", "square", "plus")) +
#' theme_bw(base_size = 16) +
#' labs(x = "Exposure duration (ms)", y = "Mean of correct responses", 
#'     colour = "Context length\n", shape = "Context length\n" ) + 
#' scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",
#'     "3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))
#' 
#' 
#'
#' # Exploring three factors simultaneously: T, Condition and Sex (last two between-group)
#' superb(
#'     crange(T1, T7) ~ Condition + Sex,
#'     TMB1964r,
#'     WSFactors = "T(7)",      # the within-subject factor (spanning 7 columns)
#'     adjustments = list(purpose="difference", decorrelation="CM"),
#'     plotStyle = "line", 
#'     errorbarParams = list(linewidth=0.15, position = position_dodge(.5) ),
#'     pointParams = list(size=2.5, position = position_dodge(.5)),
#'     lineParams = list(linewidth=0.25)
#' ) + 
#' scale_colour_manual( 
#'     labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#'     values = c("blue", "black", "purple", "red")) +
#' scale_shape_manual( 
#'     labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#'     values = c("circle", "triangle", "square", "plus")) +
#' theme_bw(base_size = 16) +
#' labs(x = "Exposure duration (ms)", y = "Mean of correct responses", 
#'     colour = "Context length\n", shape = "Context length\n" ) + 
#' scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",
#'     "3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))
#'
#'
#' #only keep 2 sex and 2 languages; the remaining cases are too sparse.
#' mee3 <- TMB1964r[(TMB1964r$Language != "I prefer not to answer")&TMB1964r$Language !="Other",]
#' 
#' ### This last example is commented as CRAN servers are too slow
#' #
#' # advanced plots are available, such as pointjitter 
#' # and pointjitterviolin : a plot that superimposes the distribution as a violin plot
#' # 
#' # superb(
#' #   crange(T1, T7) ~ Condition + Language,
#' #   mee3,
#' #   WSFactors = "T(7)",
#' #   adjustments = list(purpose="difference", decorrelation="CM"), 
#' #   plotStyle = "pointjitterviolin",
#' #   jitterParams = list(alpha = 0.4), #near transparent jitter points
#' #   violinParams = list(alpha = 0.2)
#' #) + 
#' #scale_fill_manual( name = "Amount of context", 
#' #    labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#' #    values = c("blue", "black", "purple", "red")) +
#' #scale_colour_manual( name = "Amount of context", 
#' #    labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#' #    values = c("blue", "black", "purple", "red")) +
#' #scale_shape_manual( name = "Amount of context",
#' #    labels = c("Context 0", "Context 2", "Context 4", "Context 8"), 
#' #    values = c("circle", "triangle", "square", "cross")) +
#' #theme_bw(base_size = 16) +
#' #labs(x = "Exposure duration (ms)", y = "Mean of correct responses" )+ 
#' #scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",
#' #    "3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))
#' #
#' 
#' 
"TMB1964r"
dcousin3/superb documentation built on Oct. 29, 2024, 5:28 p.m.