# SPDX-FileCopyrightText: 2022 Jure Demšar, Nina Purg, Grega Repovš
#
# SPDX-License-Identifier: GPL-3.0-or-later
library(autohrf)
# set tolerance
tol <- 0.05
# set seed
set.seed(27)
# prepare model specs
# 3 events: encoding, delay, response
model3 <- data.frame(
event = c("encoding", "delay", "response"),
start_time = c(0, 2.65, 12.5),
end_time = c(3, 12.5, 16)
)
# 4 events: fixation, target, delay, response
model4 <- data.frame(
event = c("fixation", "target", "delay", "response"),
start_time = c(0, 2.5, 2.65, 12.5),
end_time = c(2.5, 3, 12.5, 15.5)
)
model_constraints <- list(model3, model4)
# run autohrf
df <- flanker
autofit <- autohrf(df, model_constraints, tr = 2.5,
population = 2, iter = 2, cores = 1)
# convolve_events
test_that("convolve_events", {
# create the model
m <- data.frame(event = c("encoding", "delay", "response"),
start_time = c(0, 2.5, 12.5), duration = c(2.5, 10, 5))
# convolve
ce <- convolve_events(m, tr = 2.5, max(df$t))
# test
expect_equal(mean(ce), 0.065, tolerance = tol)
})
# plot_events
test_that("plot_events", {
plot <- plot_events(autofit[[1]])
expect_s3_class(plot, "ggplot")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.