layer_alpha_dropout: Applies Alpha Dropout to the input.

Description Usage Arguments Details Input shape Output shape References See Also

View source: R/layers-noise.R

Description

Alpha Dropout is a dropout that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
layer_alpha_dropout(
  object,
  rate,
  noise_shape = NULL,
  seed = NULL,
  input_shape = NULL,
  batch_input_shape = NULL,
  batch_size = NULL,
  dtype = NULL,
  name = NULL,
  trainable = NULL,
  weights = NULL
)

Arguments

object

Model or layer object

rate

float, drop probability (as with layer_dropout()). The multiplicative noise will have standard deviation sqrt(rate / (1 - rate)).

noise_shape

Noise shape

seed

An integer to use as random seed.

input_shape

Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model.

batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10, 32) indicates that the expected input will be batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32) indicates batches of an arbitrary number of 32-dimensional vectors.

batch_size

Fixed batch size for layer

dtype

The data type expected by the input, as a string (float32, float64, int32...)

name

An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.

trainable

Whether the layer weights will be updated during training.

weights

Initial weights for layer.

Details

Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the negative saturation value.

Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

References

See Also

Other noise layers: layer_gaussian_dropout(), layer_gaussian_noise()


dfalbel/keras documentation built on Nov. 27, 2019, 8:16 p.m.