layer_masking: Masks a sequence by using a mask value to skip timesteps.

Description Usage Arguments See Also

View source: R/layers-core.R

Description

For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at that timestep are equal to mask_value, then the timestep will be masked (skipped) in all downstream layers (as long as they support masking). If any downstream layer does not support masking yet receives such an input mask, an exception will be raised.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
layer_masking(
  object,
  mask_value = 0,
  input_shape = NULL,
  batch_input_shape = NULL,
  batch_size = NULL,
  dtype = NULL,
  name = NULL,
  trainable = NULL,
  weights = NULL
)

Arguments

object

Model or layer object

mask_value

float, mask value

input_shape

Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model.

batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10, 32) indicates that the expected input will be batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32) indicates batches of an arbitrary number of 32-dimensional vectors.

batch_size

Fixed batch size for layer

dtype

The data type expected by the input, as a string (float32, float64, int32...)

name

An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.

trainable

Whether the layer weights will be updated during training.

weights

Initial weights for layer.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_dense_features(), layer_dense(), layer_dropout(), layer_flatten(), layer_input(), layer_lambda(), layer_permute(), layer_repeat_vector(), layer_reshape()


dfalbel/keras documentation built on Nov. 27, 2019, 8:16 p.m.