Description Usage Arguments References Note See Also
Adam optimizer as described in Adam - A Method for Stochastic Optimization.
1 2 3 4 5 6 7 8 9 10 | optimizer_adam(
lr = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
decay = 0,
amsgrad = FALSE,
clipnorm = NULL,
clipvalue = NULL
)
|
lr |
float >= 0. Learning rate. |
beta_1 |
The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1. Generally close to 1. |
beta_2 |
The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1. Generally close to 1. |
epsilon |
float >= 0. Fuzz factor. If |
decay |
float >= 0. Learning rate decay over each update. |
amsgrad |
Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". |
clipnorm |
Gradients will be clipped when their L2 norm exceeds this value. |
clipvalue |
Gradients will be clipped when their absolute value exceeds this value. |
Default parameters follow those provided in the original paper.
Other optimizers:
optimizer_adadelta()
,
optimizer_adagrad()
,
optimizer_adamax()
,
optimizer_nadam()
,
optimizer_rmsprop()
,
optimizer_sgd()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.