Description Usage Arguments Details Value References See Also Examples
This function estimates a confidence interval for group abundance from mark recapture method Mh.
| 1 2 |         int.est.crMh(samp, num.mix = 2, init.N = -1, ci.type = "boot.nonpar", nboot = 999,
                     vlevels = c(0.025, 0.975), plot = FALSE, seed = NULL)
 | 
| samp | object of class 'sample.crMh´. | 
| num.mix | the number of mixtures of animal groups | 
| init.N | starting value for N used in the maximum likelihood optimisation routine | 
| ci.type | method for constructing the confidence interval. Possible methods are * 'boot.nonpar´ gives a nonparametric bootstrap CI, | 
| nboot | number of bootstrap replications. | 
| vlevels | vector of percentage levels for confidence intervals. | 
| plot | if TRUE the distribution of group abundance estimates from the bootstrap resamples is plotted. | 
| seed | the number passed to set.seed() to initialise random number generator | 
Details of the bootstrap methods are given in Borchers et al. (2002), pp112-113.
An object of class 'int.est.crMh´ containing the following items:
| levels | percentage levels for confidence interval | 
| ci | the confidence interval | 
| boot.mean | mean of bootstrap estimates | 
| boot.dbn | full set of nboot bootstrap estimates. | 
| init.N | Equal to the object init.N passed to the function | 
| se | standard error | 
| cv | coefficient of variation | 
| ci.type | Equal to the object 'ci.type' passed to the function | 
| parents | Details of WiSP objects passed to function | 
| created | Creation date and time | 
| seed | Equal to the argument 'seed' passed to the function | 
Borchers, D.L., Buckland, S.T. and Zucchini, W. 2002. Estimating animal abundance: closed populations. Springer. London. 314pp.
setpars.survey.cr,   generate.sample.cr
point.est.crMh
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | cr.reg<-generate.region(x.length=100, y.width=50)
cr.dens <- generate.density(cr.reg)
cr.poppars<-setpars.population(density.pop = cr.dens, number.groups = 1000, 
                               size.method = "poisson", size.min = 1, size.max = 5,
                               size.mean = 1, exposure.method = "beta", exposure.min = 2,
                               exposure.max = 10, exposure.mean = 3, exposure.shape = 0.5,
                              type.values = c("Male","Female"), type.prob = c(0.48,0.52))
cr.pop<-generate.population(cr.poppars)
cr.des<-generate.design.cr(cr.reg, n.occ = 4)
cr.survpars<-setpars.survey.cr(cr.pop, cr.des, pmin.unmarked=0.00001, pmax.unmarked=0.5, improvement=0.01)
cr.samp<-generate.sample.cr(cr.survpars)
# Mh
cr.ci.Mh<-int.est.crMh(cr.samp, nboot=3)
summary(cr.ci.Mh)
plot(cr.ci.Mh)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.