Description Usage Arguments Value References Examples
Prediction of binomial-distributed random variables using GP regression
1 2  | 
x.train | 
 vector of independent variables used for training  | 
c.train | 
 vector of dependent variables used for training  | 
x.new | 
 vector of variables for which a response should be predicted  | 
pars | 
 a list containing the hyper-parameters and kernel specifications  | 
... | 
 additional parameters (not specified)  | 
An object of class lvgpc.pred
an lvgpc.pred object
c.predict  | 
  the predicted c* values given the   | 
mean.c.predict  | 
  the predicted mean c* values
given the   | 
mean  | 
 the (approximated) posterior mean values  | 
cov   | 
 the (approximated) posterior covariance/kernel  | 
call   | 
 the function call  | 
Rasmussen C.E. and Williams C.K.I. (2006),
Gaussian Processes for Machine Learning, MIT Press 
http://www.gaussianprocess.org/gpml/ 
 
Barber D. (2013), Bayesian Reasoning and Machine Learning,
Cambridge University Press 
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage
1 2 3 4 5  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.