#' Read APS 2019
#'
#' Reads and performs basic cleaning on the Annual Population Survey 2019. From this year, there
#' are no variables capturing smoking behaviour or happiness/life satisfaction.
#'
#' @param root Character - the root directory
#' @param file Character - the file path and name
#'
#'
#' @return Returns a data table
#' @export
aps_read_2019 <- function(
root = c("C:/"),
file = "Users/User/Documents/Datasets/Annual Population Survey/raw data/apsp_jan_dec19_eul_pwta18.tab"
) {
data <- data.table::fread(
paste0(root[1], file),
na.strings = c("NA", "", "-1", "-2", "-6", "-7", "-8", "-9", "-90", "-90.0", "N/A")
)
setnames(data, names(data), tolower(names(data)))
### keep relevant variables
weights_vars <- Hmisc::Cs(pwta18,piwta18)
demographic_vars <- Hmisc::Cs(age,sex,govtof,ethukeul)
family_vars <- Hmisc::Cs(marsta)
education_vars <- Hmisc::Cs(hiqul15d)
work_vars <- Hmisc::Cs(inecac05,grsswk,ftptwk,ttachr,ttushr,illwk,illoff)
#health_vars <- Hmisc::Cs(happy,satis,cigsmk16)
other_vars <- Hmisc::Cs(refwkm)
names <- c(demographic_vars,family_vars,education_vars,work_vars, weights_vars,other_vars)
names <- tolower(names)
data <- data[ ,names, with=F]
### tidy data
# rename of variables which change over time.
data <- rename(data,
c("hiqual" = "hiqul15d"),
c("month" = "refwkm"),
c("pwt" = "pwta18"),
c("piwt" = "piwta18")
)
# date variables
data$quarter <- recode(as.character(data$month),
"1" = "1" ,
"2" = "1" ,
"3" = "1" ,
"4" = "2" ,
"5" = "2" ,
"6" = "2" ,
"7" = "3" ,
"8" = "3" ,
"9" = "3" ,
"10" = "4" ,
"11" = "4" ,
"12" = "4" )
data$year <- 2019
return(data[])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.