### Read in the MESAS population, consumption, and price data
library(readxl)
library(dplyr)
#####################################################
############ YEAR AND PRODUCT IDENTIFIERS ###########
year <- c(rep(1994,9),rep(1995,9),rep(1996,9),rep(1997,9),rep(1998,9),
rep(1999,9),rep(2000,9),rep(2001,9),rep(2002,9),rep(2003,9),
rep(2004,9),rep(2005,9),rep(2006,9),rep(2007,9),rep(2008,9),
rep(2009,9),rep(2010,9),rep(2011,9),rep(2012,9),rep(2013,9),
rep(2014,9),rep(2015,9))
product <- rep(c("Total","Spirits","RTDs","Fortified Wines","Wine","Other","Cider","Perry","Beer"),22)
#####################################################
######## TOTAL CONSUMED IN 000s OF LITRES ###########
# consumption data - units per person. (on trade)
litres.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "D4:Y12",
col_names = FALSE)
litres.data <- as.matrix(litres.data)
litres.data <- round(as.numeric(litres.data),2)
litres.ontrade <- as.vector(matrix(litres.data,ncol=1))
# consumption data - units per person. (off trade)
litres.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "AB4:AW12",
col_names = FALSE)
litres.data <- as.matrix(litres.data)
litres.data <- round(as.numeric(litres.data),2)
litres.offtrade <- as.vector(matrix(litres.data,ncol=1))
#####################################################
############ UNITS CONSUMED PER PERSON ##############
# consumption data - units per person. (on trade)
units.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "D30:Y38",
col_names = FALSE)
units.data <- as.matrix(units.data)
units.data <- round(as.numeric(units.data),2)
units.pp.ontrade <- as.vector(matrix(units.data,ncol=1))
# consumption data - units per person. (off trade)
units.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "AB30:AW38",
col_names = FALSE)
units.data <- as.matrix(units.data)
units.data <- round(as.numeric(units.data),2)
units.pp.offtrade <- as.vector(matrix(units.data,ncol=1))
#####################################################
############ PRICES PER UNIT ########################
# price data - average price per unit sold (on trade)
prices.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "D43:Y51",
col_names = FALSE)
prices.data <- as.matrix(prices.data)
prices.data <- round(as.numeric(prices.data),2)
price.ontrade <- as.vector(matrix(prices.data,ncol=1))
# price data - average price per unit sold (off trade)
prices.data <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "England & Wales data",
range = "AB43:AW51",
col_names = FALSE)
prices.data <- as.matrix(prices.data)
prices.data <- round(as.numeric(prices.data),2)
price.offtrade <- as.vector(matrix(prices.data,ncol=1))
#####################################################
############ POPULATION DATA ########################
population <- read_excel(path = paste0("data-raw/","MESAS alcohol retail sales dataset",".xls"),
sheet = "Population data",
range = "A4:C21",
col_names = FALSE)
population <- data.frame(population) %>%
rename(year = ...1,
population = ...3) %>%
select(year,population) %>%
filter(year >= 2000)
#####################################################
######### COMBINE DATA INTO ONE FRAME ###############
data <- data.frame(year,product,
litres.ontrade,litres.offtrade,
units.pp.ontrade,units.pp.offtrade,
price.ontrade,price.offtrade)
data <- data %>%
filter(year >= 2000) %>%
filter(product != "Other")
data_mesas_englandwales <- merge(data,population) %>%
mutate(consumption.ontrade = (price.ontrade*units.pp.ontrade*population)/1000000 ) %>%
mutate(consumption.offtrade = (price.offtrade*units.pp.offtrade*population)/1000000 )
usethis::use_data(data_mesas_englandwales,overwrite=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.