# Add required fields to the field descriptor for an integer column
#
# @param fielddescriptor should be a list.
#
# @return
# Returns \code{fielddescriptor} with the required fields added.
#
complete_fielddescriptor_integer <- function(fielddescriptor) {
if (!exists("type", fielddescriptor)) fielddescriptor[["type"]] <- "integer"
fielddescriptor
}
#' Convert a vector to 'integer' using the specified field descriptor
#'
#' @param x the vector to convert.
#' @param fielddescriptor the field descriptor for the field.
#' @param ... passed on to other methods.
#'
#' @details
#' When \code{fielddescriptor} is missing a default field descriptor is
#' generated.
#'
#' @return
#' Will return an \code{integer} vector with \code{fielddescriptor} added as
#' the 'fielddescriptor' attribute.
#'
#' @export
dp_to_integer <- function(x, fielddescriptor = list(), ...) {
UseMethod("dp_to_integer")
}
#' @export
dp_to_integer.integer <- function(x, fielddescriptor = list(), ...) {
fielddescriptor <- complete_fielddescriptor_integer(fielddescriptor)
structure(x, fielddescriptor = fielddescriptor)
}
#' @export
dp_to_integer.numeric <- function(x, fielddescriptor = list(), ...) {
fielddescriptor <- complete_fielddescriptor_integer(fielddescriptor)
# Need to check for rounding errors? Would round(x) be better?
x <- as.integer(round(x))
structure(x, fielddescriptor = fielddescriptor)
}
#' @export
dp_to_integer.factor <- function(x, fielddescriptor = list(), ...) {
fielddescriptor <- complete_fielddescriptor_integer(fielddescriptor)
categorieslist <- dp_categorieslist(fielddescriptor)
if (is.null(categorieslist)) {
x <- as.integer(x)
} else {
na <- is.na(x)
if (length(intersect(levels(x), categorieslist[[2]])) != nlevels(x)) {
stop("Levels of x do not match categorieslist.")
}
x <- match(x, categorieslist[[2]])
}
structure(x, fielddescriptor = fielddescriptor)
}
#' @export
dp_to_integer.character <- function(x, fielddescriptor = list(), ...) {
fielddescriptor <- complete_fielddescriptor_integer(fielddescriptor)
# Consider "" as a NA
na_values <- if (!is.null(fielddescriptor$missingValues))
fielddescriptor$missingValues else ""
na <- x %in% na_values | is.na(x);
x[x %in% na_values] <- NA
# handle bareNumber
if (!is.null(fielddescriptor$bareNumber) &&
(fielddescriptor$bareNumber == FALSE)) {
res <- bareNumber(x, warn = FALSE)
x <- res$remainder
}
# groupChar
if (!is.null(fielddescriptor$groupChar))
x <- gsub(fielddescriptor$groupChar, "", x, fixed = TRUE)
# Convert
res <- suppressWarnings(as.integer(x))
invalid <- is.na(res) & !na
if (any(invalid))
stop("Invalid values found: '", x[utils::head(which(invalid), 1)], "'.")
structure(res, fielddescriptor = fielddescriptor)
}
#' @export
dp_to_integer.integer64 <- function(x, fielddescriptor = list(), ...) {
# integer64 is automaticall used by fread for large numbers
fielddescriptor <- complete_fielddescriptor_integer(fielddescriptor)
structure(x, fielddescriptor = fielddescriptor)
}
# @rdname csv_colclass
# @export
csv_colclass_integer <- function(fielddescriptor = list(), ...) {
colclass <- "integer"
# When there are specific strings that encode a missing values we have to
# read the field as character; otherwise we can leave the conversion to
# integer to the csv reader.
if (!is.null(fielddescriptor$missingValues)) colclass <- "character"
# When the field can contain additional text; e.g. "50%" we have to
# read as character
if (!is.null(fielddescriptor$bareNumber) &&
(fielddescriptor$bareNumber == FALSE)) colclass <- "character"
# Same for thousands separator
if (!is.null(fielddescriptor$groupChar) &&
(fielddescriptor$groupChar != "")) colclass <- "character"
colclass
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.