AgglomerationType <- list(NormalAgglomeration=0,AggresiveAgglomeration=1,RelaxedAgglomeration=2)
DriftType <- list(NormalDrift=0,FastDrift=1,SlowDrift=2,NoDrift=3,UltraFastDrift=4)
.reserved <- c("class","assigned","clazz","component","cids","isOutlier","stopHere","clazzAsOutlier")
calcCM <- function(item) {
mean1 <- item$c1Component$mean
covar1 <- item$c1Component$covariance
vvar1 <- item$c1Component$virtualVariance
N1 <- item$c1Component$N
isInv1 <- item$c1Component$isInversion
mean2 <- item$c2Component$mean
covar2 <- item$c2Component$covariance
vvar2 <- item$c2Component$virtualVariance
N2 <- item$c2Component$N
isInv2 <- item$c2Component$isInversion
mdsep <- shc_MDSeparation(mean1, covar1, vvar1, N1, isInv1, item$c1th,
mean2, covar2, vvar2, N2, isInv2, item$c2th)
list(key=item$key, measure=mdsep)
}
calcMMM <- function(item) {
mean1 <- item$c1Component$mean
covar1 <- item$c1Component$covariance
vvar1 <- item$c1Component$virtualVariance
N1 <- item$c1Component$N
isInv1 <- item$c1Component$isInversion
mean2 <- item$c2Component$mean
covar2 <- item$c2Component$covariance
vvar2 <- item$c2Component$virtualVariance
N2 <- item$c2Component$N
isInv2 <- item$c2Component$isInversion
md_min <- shc_MutualMinMahalanobis(mean1, covar1, vvar1, N1, isInv1,
mean2, covar2, vvar2, N2, isInv2)
list(key=item$key, measure=md_min)
}
normalize.data.frame <- function(x, take_cols, class_col=NULL, outlier_col=NULL, multiplier=1) {
spec_cols <- c()
if(!is.null(class_col)) {
if(is.character(class_col)) spec_cols <- c(spec_cols,which(colnames(x)==class_col))
else spec_cols <- c(spec_cols,class_col)
}
if(!is.null(outlier_col)) {
if(is.character(outlier_col)) spec_cols <- c(spec_cols,which(colnames(x)==outlier_col))
else spec_cols <- c(spec_cols,outlier_col)
}
take_cols_i <- c()
for(v1 in take_cols) {
if(is.character(v1)) take_cols_i <- c(take_cols_i,which(colnames(x)==v1))
else take_cols_i <- c(take_cols_i,v1)
}
tdf <- x[,setdiff(take_cols_i,spec_cols)]
maxdiff <- 0
for(col in colnames(tdf)) {
cdiff <- max(tdf[,col])-min(tdf[,col])
if(cdiff>maxdiff) maxdiff <- cdiff
}
for(col in colnames(tdf)) {
m_low <- min(tdf[,col])
m_upper <- max(tdf[,col])
normalized <- (tdf[,col]-m_low)/maxdiff
tdf[col] <- normalized * multiplier
#tdf[,col] <-
}
tdf <- cbind(tdf,x[,spec_cols])
tdf
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.