#' Compare data and model prediction by computing residuals
#'
#' @param data data.frame with name (factor), time (numeric), value (numeric) and sigma (numeric)
#' @param out output of ode(), optionally augmented with attributes
#' "deriv" (output of ode() for the sensitivity equations) and
#' "parameters" (character vector of parameter names, a subsest of those
#' contained in the sensitivity equations). If "deriv" is given, also "parameters"
#' needs to be given.
#' @return data.frame with the original data augmented by columns "prediction" (
#' numeric, the model prediction), "residual" (numeric, difference between
#' prediction and data value), "weighted.residual" (numeric, residual devided
#' by sigma). If "deriv" was given, the returned data.frame has an
#' attribute "deriv" (data.frame with the derivatives of the residuals with
#' respect to the parameters).
#' @export
#' @import cOde2ndSens
res <- function (data, out) {
# Unique times, names and parameter names
times <- sort(unique(data$time))
names <- as.character(unique(data$name))
pars <- attr(out, "parameters")
# Match data times/names in unique times/names
data.time <- match(data$time, times)
data.name <- match(data$name, names)
# Match unique times/names in out times/names
time.out <- match(times, out[,1])
name.out <- match(names, colnames(out))
# Match data times/names in out times/names
timeIndex <- time.out[data.time]
nameIndex <- name.out[data.name]
prediction <- sapply(1:nrow(data), function(i) out[timeIndex[i], nameIndex[i]])
# Propagate derivatives if available
deriv <- attr(out, "deriv")
deriv.data <- NULL
if (!is.null(deriv)) {
sensnames <- as.vector(outer(names, pars, paste, sep="."))
# Match names to the corresponding sensitivities in sensnames
names.sensnames <- t(matrix(1:length(sensnames), nrow = length(names), ncol = length(pars)))
# Get positions of sensnames in colnames of deriv
sensnames.deriv <- match(sensnames, colnames(deriv))
# Get the columns in deriv corresponding to data names
derivnameIndex <- matrix(sensnames.deriv[names.sensnames[, data.name]], ncol = length(data.name))
# Derivatives of the prediction
deriv.prediction <- do.call(rbind, lapply(1:nrow(data), function(i) submatrix(deriv, timeIndex[i], derivnameIndex[, i])))
colnames(deriv.prediction) <- pars
deriv.data <- data.frame(time = data$time, name = data$name, deriv.prediction)
}
# -------------------------------------------
# Propagate sderivatives if available
sderiv <- attr(out, "sderiv")
sderiv.data <- NULL
if (!is.null(sderiv)) {
ssensnames <- as.vector(outer(outer(names, pars, paste, sep="."), pars, paste, sep="."))
# Match names to the corresponding ssensitivities in ssensnames
names.ssensnames <- t(matrix(1:length(ssensnames), nrow = length(names), ncol = length(pars)^2))
# Get positions of ssensnames in colnames of sderiv
ssensnames.sderiv <- match(ssensnames, colnames(sderiv))
# Get the columns in sderiv corresponding to data names
sderivnameIndex <- matrix(ssensnames.sderiv[names.ssensnames[, data.name]], ncol = length(data.name))
# Derivatives of the prediction
sderiv.prediction <- do.call(rbind, lapply(1:nrow(data), function(i) submatrix(sderiv, timeIndex[i], sderivnameIndex[, i])))
colnames(sderiv.prediction) <- outer(pars, pars, paste, sep =".")
sderiv.data <- data.frame(time = data$time, name = data$name, sderiv.prediction)
}
# ------------------------------------------------------------------------------------------------------------------------------
# Compute residuals
residuals <- prediction - data$value
weighted.residuals <- (prediction - data$value)/data$sigma
data <- cbind(data, prediction = prediction, residual = residuals,
weighted.residual = weighted.residuals)
data <- data[c("time", "name", "value", "prediction", "sigma",
"residual", "weighted.residual")]
#attr(data, "deriv") <- deriv.data
objframe(data, deriv = deriv.data, sderiv = sderiv.data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.