Description Usage Arguments Value Note References Examples
Compute I2 (total heterogeneity divided by total variability). Note that the I2 formulation for three-level models is described in \insertCitecheung2014modeling;textualblsmeta.
1 2 3 4 5 6 7 8 9 10 |
object |
An object of class |
newdata_scale2 |
An optional data.frame for which to compute
predictions for the level 2 variance component.
Defaults to |
newdata_scale3 |
An optional data.frame for which to compute
predictions for the level 3 variance component.
Defaults to |
s2 |
numeric. A user-defined "typical" sampling variance. Defaults to the estimator in Equation 9 of \insertCiteHiggins2002a;textualblsmeta. |
cred |
numeric. credible interval (defaults to |
summary |
logical. Should the posterior samples be summarized
(defaults to |
percent |
logical. Should the results be percentages, as in metafor
(defaults to |
digits |
numeric. The desired number of digits for the summarized
estimates (defaults to |
A data frame of predicted values.
The sampling variances are assumed to be known.
'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # data
library(psymetadata)
# no scale model
fit <- blsmeta(yi, vi,
es_id = es_id,
data = gnambs2020)
# compute I2 for all data
i2 <- I2(fit)
# scale model
fit <- blsmeta(yi, vi,
es_id = es_id,
mods_scale2 = ~ n,
data = gnambs2020)
new_data <- data.frame(n = c(100, 150))
# compute I2 for new data
i2 <- I2(fit, newdata_scale2 = new_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.