# Test spIntPGOcc.R ------------------------------------------------------
# GP ----------------------------------------------------------------------
skip_on_cran()
# Intercept only ----------------------------------------------------------
set.seed(1010)
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(1, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(1, -1, 1)
alpha[[4]] <- runif(1, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
fix = TRUE,
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
nu.unif = c(0.5, 2),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3, nu = 0.4)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ 1
det.formula <- list(f.1 = ~ 1, f.2 = ~ 1, f.3 = ~ 1, f.4 = ~ 1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check non-integer n.post -------------
test_that("non-integer n.post", {
expect_error(out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.thin = 13,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
NNGP = FALSE,
n.omp.threads = 1,
verbose = FALSE))
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
# Occurrence covariate only -----------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1.2, -0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(1, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(1, -1, 1)
alpha[[4]] <- runif(1, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ occ.cov.1 + occ.cov.2
det.formula <- list(f.1 = ~ 1, f.2 = ~ 1, f.3 = ~ 1, f.4 = ~ 1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check missing values ----------------
test_that("missing value error handling works", {
tmp.data <- data.list
tmp.data$occ.covs[3, ] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
# tmp.data <- data.list
# tmp.data$det.covs[[1]][[1]][1] <- NA
# expect_error(spIntPGOcc(occ.formula = occ.formula,
# det.formula = det.formula,
# data = tmp.data,
# n.batch = 40,
# batch.length = batch.length,
# cov.model = "exponential",
# tuning = tuning.list,
# NNGP = FALSE,
# verbose = FALSE,
# n.neighbors = 5,
# search.type = 'cb',
# n.report = 10,
# n.burn = 500,
# n.chains = 1))
# tmp.data <- data.list
# tmp.data$y[[1]][1, 1] <- NA
# out <- spIntPGOcc(occ.formula = occ.formula,
# det.formula = det.formula,
# data = tmp.data,
# n.batch = 40,
# batch.length = batch.length,
# cov.model = "exponential",
# tuning = tuning.list,
# NNGP = FALSE,
# verbose = FALSE,
# n.neighbors = 5,
# search.type = 'cb',
# n.report = 10,
# n.burn = 500,
# n.chains = 1)
# expect_s3_class(out, "spIntPGOcc")
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
# Detection covariate only ------------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(2:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(3, -1, 1)
alpha[[4]] <- runif(2, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1],
det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1],
det.cov.3.1 = X.p[[3]][, , 2],
det.cov.3.2 = X.p[[3]][, , 3])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1],
det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ 1
det.formula <- list(f.1 = ~ det.cov.1.1,
f.2 = ~ 1,
f.3 = ~ det.cov.3.1 + det.cov.3.2,
f.4 = ~ det.cov.4.1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check missing values ----------------
test_that("missing value error handling works", {
# tmp.data <- data.list
# tmp.data$occ.covs[3, ] <- NA
# expect_error(spIntPGOcc(occ.formula = occ.formula,
# det.formula = det.formula,
# data = tmp.data,
# n.batch = 40,
# batch.length = batch.length,
# cov.model = "exponential",
# tuning = tuning.list,
# NNGP = FALSE,
# verbose = FALSE,
# n.neighbors = 5,
# search.type = 'cb',
# n.report = 10,
# n.burn = 500,
# n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- 1
tmp.data$det.covs[[1]][[2]][1] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- NA
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
# Covariates on both ------------------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(2:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1.2, -0.3)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(3, -1, 1)
alpha[[4]] <- runif(2, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1],
det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1],
det.cov.3.1 = X.p[[3]][, , 2],
det.cov.3.2 = X.p[[3]][, , 3])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1],
det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ occ.cov.1 + occ.cov.2
det.formula <- list(f.1 = ~ det.cov.1.1,
f.2 = ~ 1,
f.3 = ~ det.cov.3.1 + det.cov.3.2,
f.4 = ~ det.cov.4.1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check missing values ----------------
test_that("missing value error handling works", {
tmp.data <- data.list
tmp.data$occ.covs[3, ] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- 1
tmp.data$det.covs[[1]][[2]][1] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- NA
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
# Interactions on both ----------------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(2:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1.2, -0.3)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(3, -1, 1)
alpha[[4]] <- runif(2, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1],
det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1],
det.cov.3.1 = X.p[[3]][, , 2],
det.cov.3.2 = X.p[[3]][, , 3])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1],
det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ occ.cov.1 * occ.cov.2
det.formula <- list(f.1 = ~ det.cov.1.1,
f.2 = ~ 1,
f.3 = ~ det.cov.3.1 * det.cov.3.2,
f.4 = ~ det.cov.4.1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check missing values ----------------
test_that("missing value error handling works", {
tmp.data <- data.list
tmp.data$occ.covs[3, ] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- 1
tmp.data$det.covs[[1]][[2]][1] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- NA
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
X.0 <- cbind(X.0, X.0[, 2] * X.0[, 3])
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
# Model with fixed sigma.sq -----------------------------------------------
test_that("spIntPGOcc works with fixed sigma.sq", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
priors = list(sigma.sq.ig = "fixed"),
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
expect_equal(length(unique(out$theta.samples[, 1])), 1)
})
# Uniform sigma sq --------------------------------------------------------
test_that("spIntPGOcc works with uniform prior on sigma.sq", {
prior.list <- list(sigma.sq.unif = c(0, 5),
nu.unif = c(0.1, 4))
tuning.list <- list(phi = 0.5, nu = 0.6, sigma.sq = 0.7)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
priors = prior.list,
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = prior.list,
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Different max(n.rep) ----------------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(2:4, size = J.obs[i], replace = TRUE)
}
n.rep.max <- rep(5, n.data)
# Occupancy covariates
beta <- c(0.5, 1.2, -0.3)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(1, 0, 1)
alpha[[3]] <- runif(3, -1, 1)
alpha[[4]] <- runif(2, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE
# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential', n.rep.max = n.rep.max)
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)
# Package all data into a list
occ.covs <- X
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(int.1 = X.p[[1]][, , 1],
det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(int.2 = X.p[[2]][, , 1])
det.covs[[3]] <- list(int.3 = X.p[[3]][, , 1],
det.cov.3.1 = X.p[[3]][, , 2],
det.cov.3.2 = X.p[[3]][, , 3])
det.covs[[4]] <- list(int.4 = X.p[[4]][, , 1],
det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)
J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),
beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)
# Number of batches
n.batch <- 40
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
occ.formula <- ~ occ.cov.1 + occ.cov.2
det.formula <- list(f.1 = ~ det.cov.1.1,
f.2 = ~ 1,
f.3 = ~ det.cov.3.1 + det.cov.3.2,
f.4 = ~ det.cov.4.1)
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
n.chains = 2,
k.fold = 2,
k.fold.threads = 1)
# Test to make sure it worked ---------
test_that("out is of class spIntPGOcc", {
expect_s3_class(out, "spIntPGOcc")
})
# Check cross-validation --------------
test_that("cross-validation works", {
expect_equal(length(out$k.fold.deviance), n.data)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check individual data set cv --------
test_that("individual data set cv works", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 2,
k.fold = 2,
k.fold.data = 2)
expect_equal(length(out$k.fold.deviance), 1)
expect_type(out$k.fold.deviance, "double")
expect_equal(sum(out$k.fold.deviance < 0), 0)
})
# Check output data is correct --------
test_that("out$y == y", {
expect_equal(out$y, y)
})
# Check missing values ----------------
test_that("missing value error handling works", {
tmp.data <- data.list
tmp.data$occ.covs[3, ] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- 1
tmp.data$det.covs[[1]][[2]][1] <- NA
expect_error(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
tmp.data <- data.list
tmp.data$y[[1]][1, 1] <- NA
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = tmp.data,
n.batch = 40,
batch.length = batch.length,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check default priors ----------------
test_that("default priors and inits work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = FALSE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
# Check verbose -----------------------
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1))
})
# Check all correlation functions -----
test_that("all correlation functions work", {
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "gaussian",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "spherical",
tuning = list(phi = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
out <- spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
n.batch = 40,
batch.length = batch.length,
cov.model = "matern",
priors = list(nu.unif = c(0.5, 2)),
tuning = list(phi = 0.5, nu = 0.5),
NNGP = FALSE,
verbose = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1)
expect_s3_class(out, "spIntPGOcc")
})
test_that("verbose prints to the screen", {
expect_output(spIntPGOcc(occ.formula = occ.formula,
det.formula = det.formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.chains = 1))
})
# Check waicOcc -----------------------
test_that("waicOCC works for spIntPGOcc", {
waic.out <- waicOcc(out)
expect_equal(ncol(waic.out), 3)
expect_equal(nrow(waic.out), n.data)
expect_equal(waic.out[, 3], -2 * (waic.out[, 1] - waic.out[, 2]))
})
test_that("fitted works for spIntPGOcc", {
fitted.out <- fitted(out)
expect_equal(class(fitted.out), "list")
expect_equal(length(fitted.out), 2)
expect_equal(length(fitted.out[[1]]), n.data)
})
test_that("predict works for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
X.0 <- dat$X.pred
coords.0 <- dat$coords.pred
pred.out <- predict(out, X.0, coords.0, verbose = FALSE)
expect_type(pred.out, "list")
expect_equal(dim(pred.out$psi.0.samples), c(n.post.samples, nrow(X.0)))
expect_equal(dim(pred.out$z.0.samples), c(n.post.samples, nrow(X.0)))
})
test_that("posterior predictive checks work for spIntPGOcc", {
n.post.samples <- out$n.post * out$n.chains
ppc.out <- ppcOcc(out, 'chi-square', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'chi-square', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 1)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
ppc.out <- ppcOcc(out, 'freeman-tukey', 2)
expect_type(ppc.out, "list")
expect_equal(sapply(ppc.out$fit.y, length), rep(n.post.samples, n.data))
expect_equal(sapply(ppc.out$fit.y.rep, length), rep(n.post.samples, n.data))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.