Description Usage Arguments Value Examples
This function allows you to generate the parameters for two 2-component Gaussian mixture model with equal variances from 2 matrices of data with a priori labels (eg tumor vs normal.) This application was originally intended for matrices of gene expression data treated with 2 conditions.
1 | mixModelParams(exprNml, exprTum)
|
exprNml |
A dataframe (S3 or S4), matrix, or SummarizedExperiment object containing normal data with patients as columns and genes as rows. |
exprTum |
A dataframe (S3 or S4), matrix, or SummarizedExperiment object containing tumor data with patients as columns and genes as rows. |
Returns a dataframe, each element of which contains the 12 mixture model parameters for each gene in an n x 12 matrix, where n is the number of genes.
1 2 3 4 5 6 7 8 9 10 11 | exprNml <- as.data.frame(matrix(data=rgamma(n=150, shape=2, rate=2),
nrow=10, ncol=15))
colnames(exprNml) <- paste0("patientN", seq_len(ncol(exprNml)))
rownames(exprNml) <- paste0("gene", seq_len(nrow(exprNml)))
exprTum <- as.data.frame(matrix(data=rgamma(n=150, shape=4, rate=3),
nrow=10, ncol=15))
colnames(exprTum) <- paste0("patientT", seq_len(ncol(exprTum)))
rownames(exprTum) <- paste0("gene", seq_len(nrow(exprTum)))
mmParams <- mixModelParams(exprNml, exprTum)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.