Description Usage Arguments Value See Also Examples
This function allows you to plot a histogram of gene expression values from tumor and adjacent normal tissue with the option of including the best fitting Gaussian curve.
1 | plotGeneHist(mmParams, exprNml, exprTum, isof)
|
mmParams |
The output from the getMixModelParams function. |
exprNml |
A dataframe (S3 or S4), matrix, or SummarizedExperiment object containing normal data with patients as columns and genes as rows. |
exprTum |
A dataframe (S3 or S4), matrix, or SummarizedExperiment object containing tumor data with patients as columns and genes as rows. |
isof |
The gene isoform to visualize |
Returns a histogram of the gene expression values from the two groups.
1 2 3 4 5 6 7 8 9 10 11 12 | exprNml <- as.data.frame(matrix(data=rgamma(n=150, shape=2, rate=2),
nrow=10, ncol=15))
colnames(exprNml) <- paste0("patientN", seq_len(ncol(exprNml)))
rownames(exprNml) <- paste0("gene", seq_len(nrow(exprNml)))
exprTum <- as.data.frame(matrix(data=rgamma(n=150, shape=4, rate=3),
nrow=10, ncol=15))
colnames(exprTum) <- paste0("patientT", seq_len(ncol(exprTum)))
rownames(exprTum) <- paste0("gene", seq_len(nrow(exprTum)))
mmParams <- mixModelParams(exprNml, exprTum)
isof <- rownames(mmParams)[1]
plotGeneHist(mmParams, exprNml, exprTum, isof)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.