#' Creates a plot of dissimilarity between communities at different plots and distance
#'
#' @ indat = matrix containing community data
#' @ plotno = character vector indicating column name for altitude values
#' @ group =character vector indicating column name for elevational gradient IDs (if there is more than one stuy area)
#'
betadecay<-function(indat=NULL,plotno=NULL,group=NULL,from=NULL,sp.grouping=NULL,decayinfo=NULL) {
# across all habitats first
indat<-as.data.frame(indat)
results <- NULL
site.l<-unique(indat[,group])
for (i in 1:length(site.l)){
indat1<-indat[indat[,group] %in% site.l[i],]
indat.tmp<-indat[,from:dim(indat1)[2]]
totalsp <- colSums(indat.tmp)
cols <- names(totalsp[totalsp > 0])
cols1 <- c(plotno,group,cols)
indat2 <- indat1[, cols1]
plotno.l<-sort(unique(indat2[,plotno]))
if(dim(decayinfo)[2] > 3){
decayinfotmp<-decayinfo[decayinfo[,group] %in% site.l[i],]
plotno.l.df<-decayinfotmp[decayinfotmp$NBX %in% plotno.l,]
plotno.l.df<-plotno.l.df[plotno.l.df$NBY %in% plotno.l,]
} else {
# filter out plots
plotno.l.df<-decayinfo[decayinfo$NBX %in% plotno.l,]
plotno.l.df<-plotno.l.df[plotno.l.df$NBY %in% plotno.l,]
}
for (y in 1:dim(plotno.l.df)[1]) {
d1<-indat2[indat2[,plotno] %in% plotno.l.df[y, ]$NBX,]
d2<-indat2[indat2[,plotno] %in% plotno.l.df[y, ]$NBY,]
Btotal <- NULL
Brepl <- NULL
Brich <- NULL
for (z in 1:dim(d1)[1]) {
d1<-d1[,!names(d1) %in% c(plotno,group)]
d2<-d2[,!names(d2) %in% c(plotno,group)]
commBoth <- as.matrix(rbind(d1,d2))
betaValues <- betaObs(comm = commBoth, func = "jaccard", abund = FALSE)
Btotal[z] <- betaValues$Btotal
Brepl[z] <- betaValues$Brepl
Brich[z] <- betaValues$Brich
}
res <- data.frame(site=site.l[i],Btotal = mean(Btotal), Brepl = mean(Brepl),Brich = mean(Brich),
distance=plotno.l.df[y, ]$dist,comparison=paste(plotno.l.df[y, ]$NBX,plotno.l.df[y, ]$NBY,sep="-"),
sp.group="All species")
results<- rbind(res, results)
}
}
# separate analyses by habitat
for (a in 1:length(sp.grouping)){
# filter by selected habitat
indat1<-data.frame(indat[,1:from-1],indat[,colnames(indat) %in% sp.grouping[[a]]])
site.l<-unique(indat[,group])
for (i in 1:length(site.l)){
indat2<-indat1[indat1[,group] %in% site.l[i],]
indat.tmp<-indat2[,from:dim(indat2)[2]]
totalsp <- colSums(indat.tmp)
cols <- names(totalsp[totalsp > 0])
cols1 <- c(plotno,group,cols)
indat2 <- indat2[, cols1]
plotno.l<-sort(unique(indat2[,plotno]))
if(dim(decayinfo)[2] > 3){
decayinfotmp<-decayinfo[decayinfo[,group] %in% site.l[i],]
plotno.l.df<-decayinfotmp[decayinfotmp$NBX %in% plotno.l,]
plotno.l.df<-plotno.l.df[plotno.l.df$NBY %in% plotno.l,]
} else {
# filter out plots
plotno.l.df<-decayinfo[decayinfo$NBX %in% plotno.l,]
plotno.l.df<-plotno.l.df[plotno.l.df$NBY %in% plotno.l,]
}
for (y in 1:dim(plotno.l.df)[1]) {
d1<-indat2[indat2[,plotno] %in% plotno.l.df[y, ]$NBX,]
d2<-indat2[indat2[,plotno] %in% plotno.l.df[y, ]$NBY,]
Btotal <- NULL
Brepl <- NULL
Brich <- NULL
for (z in 1:dim(d1)[1]) {
d1<-d1[,!names(d1) %in% c(plotno,group)]
d2<-d2[,!names(d2) %in% c(plotno,group)]
commBoth <- as.matrix(rbind(d1,d2))
betaValues <- betaObs(comm = commBoth, func = "jaccard", abund = FALSE)
Btotal[z] <- betaValues$Btotal
Brepl[z] <- betaValues$Brepl
Brich[z] <- betaValues$Brich
} # end of decay z loop
res <- data.frame(site=as.character(site.l[i]),Btotal = mean(Btotal), Brepl = mean(Brepl),Brich = mean(Brich),
distance=plotno.l.df[y, ]$dist,comparison=paste(plotno.l.df[y, ]$NBX,plotno.l.df[y, ]$NBY,sep="-"),
sp.group=names(sp.grouping)[a])
results<- rbind(res, results)
} # end of y loop
} # end of i loop
} # end of a habitat loop
results1<-gather(results,key=comp,value=beta,-c(site,distance,comparison,sp.group))
return(results1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.