View source: R/PlotSignatureMultiple.R
PlotSignatureMultiple | R Documentation |
PlotSignatureMultiple is used to compare multiple transcriptomic index profiles (e.g. TAI) over a common process of interest (e.g. a developmental process). The main use case is visualising how removing different subsets of genes from the expression set can perturb the transcriptome index signal.
PlotSignatureMultiple(
ExpressionSets,
set.labels,
measure = "TAI",
TestStatistic = "FlatLineTest",
modules = NULL,
permutations = 1000,
p.value = TRUE,
shaded.area = FALSE,
xlab = "Ontogeny",
ylab = "Transcriptome Index",
main = "",
legend.title = "Expression Sets",
lwd = 4,
alpha = 0.1,
y.ticks = 3
)
ExpressionSets |
a list of PhyloExpressionSet, DivergenceExpressionSet or PolymorphismsExpressionSet objects. |
set.labels |
a character vector of labels, one for each given expression set |
measure |
type of transcriptome index that shall be computed. E.g.
|
TestStatistic |
a string defining the type of test statistics to be used to quantify the statistical significance the present phylotranscriptomics pattern. Possible values can be:
|
modules |
a list storing three elements for the
|
permutations |
a numeric value specifying the number of permutations to be performed for the |
p.value |
a boolean value specifying whether the p-value of the test statistic shall be printed within the legend, for each expression set. |
shaded.area |
a boolean value specifying whether a shaded area shall be drawn for the developmental stages defined to be the presumptive phylotypic period. |
xlab |
label of x-axis. |
ylab |
label of y-axis. |
main |
figure title. |
legend.title |
legend title. |
lwd |
line width. |
alpha |
transparency of the shaded area and error ribbon (between [0,1]). Default is |
y.ticks |
number of ticks on the y-axis. Default is |
a ggplot object visualising the transcriptome index of each given expression set, together with its standard deviation per stage, obtained by permuting the gene ages. The profiles are shown on the same axes, so that they can be readily compared. Optionally, the p-value of each profile, with respect to the choice of statistic, is shown.
Stefan Manolache
data(PhyloExpressionSetExample)
# remove top 1% expressed genes
genes.top_expression <- TopExpressionGenes(PhyloExpressionSetExample, p=.99)
PhyloExpressionSetExample.top_removed <- subset(PhyloExpressionSetExample,
!(GeneID %in% genes.top_expression))
expression_sets = list(PhyloExpressionSetExample, PhyloExpressionSetExample.top_removed)
set_labels = c("100%", "99%")
# Flat line test
PlotSignatureMultiple(ExpressionSets = expression_sets,
set.labels = set_labels,
TestStatistic="FlatLineTest",
main = "A. thaliana embryogenesis",
legend.title = "Top Expressed Genes Quantile")
# Reductive hourglass test
PlotSignatureMultiple(ExpressionSets = expression_sets,
set.labels = set_labels,
TestStatistic="ReductiveHourglassTest",
main = "A. thaliana embryogenesis",
legend.title = "Top Expressed Genes Quantile",
modules=list(early=1:2, mid=3:5, late=6:7),
shaded.area=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.