fda-package: Functional Data Analysis in R

Description Details Author(s) References Examples

Description

Functions and data sets companion to Ramsay, J. O., and Silverman, B. W. (2006) Functional Data Analysis, 2nd ed. and (2002) Applied Functional Data Analysis (Springer). This includes finite bases approximations (such as splines and Fourier series) to functions fit to data smoothing on the integral of the squared deviations from an arbitrary differential operator.

Details

Package: fda
Type: Package
Version: 2.1.0
Date: 2008-11-28
License: GPL-2
LazyLoad: yes

Author(s)

J. O. Ramsay,

Maintainer: J. O. Ramsay <ramsay@psych.mcgill.ca>

References

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
##
## Simple smoothing
##
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf))
plot(girlGrowthSm$fd, xlab="age", ylab="height (cm)",
         main="Girls in Berkeley Growth Study" )
plot(deriv(girlGrowthSm$fd), xlab="age", ylab="growth rate (cm / year)",
         main="Girls in Berkeley Growth Study" )
plot(deriv(girlGrowthSm$fd, 2), xlab="age",
        ylab="growth acceleration (cm / year^2)",
        main="Girls in Berkeley Growth Study" )
##
## Simple basis
##
bspl1.2 <- create.bspline.basis(norder=1, breaks=c(0,.5, 1))
plot(bspl1.2)
# 2 bases, order 1 = degree 0 = step functions:
# (1) constant 1 between 0 and 0.5 and 0 otherwise
# (2) constant 1 between 0.5 and 1 and 0 otherwise.

fd1.2 <- Data2fd(0:1, basisobj=bspl1.2)
op <- par(mfrow=c(2,1))
plot(bspl1.2, main='bases')
plot(fd1.2, main='fit')
par(op)
# A step function:  0 to time=0.5, then 1 after

drtagkim/mcgillfdar documentation built on May 12, 2019, 6:20 p.m.