Description Usage Arguments Value Author(s) Examples
This function 'fits' the model from Schelegle et al papers. Since the number of parameters is relatively small and the response surface has many local optimum, this function conducts a grid search.
1 | fit_Schelegle(data, bounds = list(dos = c(5, 2500), a = c(-0.2, -1e-5), k = c(1e-6, 0.2), sigma = c(1e-5, 5)), n_interval = 50L, model = OzoneExposure::stanmodels$schelegle, cores = 1L, ...)
|
data |
list, result of |
bounds |
list, with the upper and lower bounds for each parameter ("dos", "a", "k", and "sigma"). There must only two numbers for each parameter, and each parameter must be named. |
n_interval |
integer, the number of intervals to create between each parameter's upper and lower bound. |
model |
a compiled Stan model |
cores |
the number of CPU cores to use. On OSX and Linux, any value > 1 will result in parallel computations. Currently, parallel ops are not available under Windows. |
... |
Additional arguments passed to |
A data.frame with
dos |
|
k |
|
a |
|
sigma |
|
aic |
the associated AIC value for each parameter combination |
Matt Espe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (data, bounds = list(dos = c(5, 2500), a = c(-0.2, 0),
k = c(0, 0.2), sigma = c(0.01, 5)), n_interval = 50L, model = OzoneExposure::stanmodels$schelegle,
cores = 1L)
{
grid = expand_bounds(bounds, n_interval)
if (cores > 1) {
cl = makeCluster(cores, "FORK")
on.exit(stopCluster(cl))
ans = parApply(cl, grid, 1, function(x) fit_eds(model,
data, x))
}
else ans = apply(grid, 1, function(x) fit_eds(model, data,
x))
return(cbind(grid, aic = ans))
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.