Description Usage Arguments Value
This function creates data frame for OASIS models
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | oasisad_df(
flair,
t1,
t2 = NULL,
pd = NULL,
gold_standard = NULL,
preproc = TRUE,
brain_mask = NULL,
img_space = FALSE,
neighbor = TRUE,
wm_mask = NULL,
seg_mask = NULL,
dir = NULL,
eroder = TRUE,
voxel_select = NULL,
normalize = TRUE,
image_sm = TRUE,
slices = NULL,
orientation = c("axial", "coronal", "sagittal"),
return_pre = FALSE,
cores = 1,
verbose = TRUE
)
|
flair |
Input FLAIR image |
t1 |
Input T1 image |
t2 |
Input T2 image |
pd |
Input PD image |
gold_standard |
gold standard lesion segmentation mask of class
|
preproc |
A boolean indicates whether to call
|
brain_mask |
Input brain_mask, if null, a mask will be obtained by FSL |
img_space |
An image to register, if NULL, 'flair' image will be used in registration. |
neighbor |
A boolean indicates whether will use neighbor refinement function in model step.
If true, either prepare segmentation and white matter mask to input in this function or
this functoin will generate masks by |
wm_mask |
Input of white matter mask |
seg_mask |
Input of segmentation mask |
dir |
A user defined output path for fslr segmentation |
eroder |
A boolean indicates whether should use |
voxel_select |
A specifed level to remove voxels whose intensity under |
normalize |
A boolean indicates whether to
perform z-score normalization of the image over the brain mask,
should be |
image_sm |
A boolean indates whether to smooth images and used as predictors in model |
slices |
vector of desired slices to train on, if |
orientation |
string value telling which orientation the training slices are specified in, can take the values of "axial", "sagittal", or "coronal" |
return_pre |
is a logical value that indicates whether the preprocessed images should be returned |
cores |
numeric indicating the number of cores to be used |
verbose |
A boolean indicated whether output messages |
OASISAS data structure
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.