SplatPop_simulation | R Documentation |
This function is used to simulate datasets from learned parameters by splatPopSimulate
function in Splatter package.
SplatPop_simulation(
parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
)
parameters |
A object generated by |
other_prior |
A list with names of certain parameters. Some methods need extra parameters to execute the estimation step, so you must input them. In simulation step, the number of cells, genes, groups, batches, the percent of DEGs and other variables are usually customed, so before simulating a dataset you must point it out. |
return_format |
A character. Alternatives choices: list, SingleCellExperiment,
Seurat, h5ad. If you select |
verbose |
Logical. Whether to return messages or not. |
seed |
A random seed. |
In addtion to simulate datasets with default parameters, users want to simulate other kinds of datasets, e.g. a counts matrix with 2 or more cell groups. In SplatPop, you can set extra parameters to simulate datasets.
The customed parameters you can set are below:
nCells. In SplatPop, you can not set nCells directly and should set batchCells instead. For example, if you want to simulate 1000 cells, you can type other_prior = list(batchCells = 1000)
. If you type other_prior = list(batchCells = c(500, 500))
, the simulated data will have two batches.
nGenes. You can directly set other_prior = list(nGenes = 5000)
to simulate 5000 genes.
nGroups. You can not directly set other_prior = list(nGroups = 3)
to simulate 3 groups. Instead, you should set other_prior = list(prob.group = c(0.2, 0.3, 0.5))
where the sum of group probabilities must equal to 1.
de.prob. You can directly set other_prior = list(de.prob = 0.2)
to simulate DEGs that account for 20 percent of all genes.
prob.group. You can directly set other_prior = list(prob.group = c(0.2, 0.3, 0.5))
to assign three proportions of cell groups. Note that the number of groups always equals to the length of the vector.
nBatches. You can not directly set other_prior = list(nBatches = 3)
to simulate 3 batches. Instead, you should set other_prior = list(batchCells = c(500, 500, 500))
to reach the goal and the total cells are 1500.
If users want to simulate datasets for trajectory inference, just set other_prior = list(paths = TRUE)
. Simulating trajectory datasets can also specify the parameters of group and batch. See Examples
.
For more customed parameters in SplatPop, please check splatter::SplatPopParams()
.
For detailed information about SplatPop, go to https://www.bioconductor.org/packages/release/bioc/vignettes/splatter/inst/doc/splatPop.html.
Azodi C B, Zappia L, Oshlack A, et al. splatPop: simulating population scale single-cell RNA sequencing data. Genome biology, 2021, 22(1): 1-16. https://doi.org/10.1186/s13059-021-02546-1
Bioconductor URL: https://bioconductor.org/packages/release/bioc/html/splatter.html
Github URL: https://github.com/Oshlack/splatter
## Not run:
# Load data
ref_data <- simmethods::data
# Estimate parameters
estimate_result <- simmethods::SplatPop_estimation(ref_data = ref_data,
verbose = TRUE,
seed = 10)
# (1) Simulate 500 cells (Since we can not set nCells directly, so we can set
# batchCells (a numeric vector)) and 500 genes
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(batchCells = 500,
nGenes = 500),
return_format = "list",
verbose = TRUE,
seed = 111
)
count_data <- simulate_result[["simulate_result"]][["count_data"]]
dim(count_data)
# (2) Simulate one group and one batch
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = NULL,
return_format = "list",
verbose = TRUE,
seed = 111
)
count_data <- simulate_result[["simulate_result"]][["count_data"]]
dim(count_data)
# (3) Simulate two groups (de.prob = 0.1) and one batch
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(nGenes = 500,
prob.group = c(0.4, 0.6)),
return_format = "list",
verbose = TRUE,
seed = 111
)
count_data <- simulate_result[["simulate_result"]][["count_data"]]
dim(count_data)
## cell information
col_data <- simulate_result[["simulate_result"]][["col_meta"]]
table(col_data$group)
## gene information
row_data <- simulate_result[["simulate_result"]][["row_meta"]]
### The result of Splat contains the factors of different groups and uses can
### calculate the fold change by division. For example, the DEFactors of A gene
### in Group1 and Group2 are respectively 2 and 1, and the fold change of A gene
### is 2/1=2 or 1/2=0.5.
fc_group1_to_group2 <- row_data$DEFacGroup2/row_data$DEFacGroup1
table(fc_group1_to_group2 != 1)[2]/500 ## de.prob = 0.1
### number of all DEGs
table(row_data$de_gene)
# (4) Simulate two groups (de.prob = 0.2) and two batches
## Since we can not set nBatches directly, so we can set batchCells (a numeric vector)
## to determin the number of batches and cells simutaniously.
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(prob.group = c(0.4, 0.6),
batchCells = c(80, 80),
nGenes = 500,
de.prob = 0.2),
return_format = "list",
verbose = TRUE,
seed = 111
)
count_data <- simulate_result[["simulate_result"]][["count_data"]]
dim(count_data)
col_data <- simulate_result[["simulate_result"]][["col_meta"]]
table(col_data$group)
table(col_data$batch)
# (5) Simulate three groups (de.prob = 0.2) and two batches
## Since we can not set nBatches directly, so we can set batchCells (a numeric vector)
## to determin the number of batches and cells simutaniously.
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(prob.group = c(0.4, 0.3, 0.3),
batchCells = c(80, 80),
nGenes = 500,
de.prob = 0.2),
return_format = "list",
verbose = TRUE,
seed = 111
)
count_data <- simulate_result[["simulate_result"]][["count_data"]]
dim(count_data)
col_data <- simulate_result[["simulate_result"]][["col_meta"]]
table(col_data$group)
table(col_data$batch)
## row data
row_data <- simulate_result[["simulate_result"]][["row_meta"]]
### DEGs
table(row_data$de_gene)
### fold change of Group1 to Group2
fc_group1_to_group2 <- row_data$DEFacGroup2/row_data$DEFacGroup1
table(fc_group1_to_group2 > 1)[2]/500
### fold change of Group1 to Group3
fc_group1_to_group3 <- row_data$DEFacGroup3/row_data$DEFacGroup1
table(fc_group1_to_group3 > 1)[2]/500
### fold change of Group2 to Group3
fc_group2_to_group3 <- row_data$DEFacGroup3/row_data$DEFacGroup2
table(fc_group2_to_group3 > 1)[2]/500
# 6) Simulate trajectory (only one group is simulated by default)
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(nGenes = 500,
paths = TRUE),
return_format = "SingleCellExperiment",
verbose = TRUE,
seed = 111
)
## plot
result <- scater::logNormCounts(simulate_result[["simulate_result"]])
result <- scater::runPCA(result)
plotPCA(result, colour_by = "group")
# 7) Simulate trajectory (three groups)
simulate_result <- simmethods::SplatPop_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(paths = TRUE,
nGenes = 500,
group.prob = c(0.3, 0.4, 0.3),
de.facLoc = 0.5,
de.prob = 0.5),
return_format = "SingleCellExperiment",
verbose = TRUE,
seed = 111
)
## plot
result <- scater::logNormCounts(simulate_result[["simulate_result"]])
result <- scater::runPCA(result)
plotPCA(result, colour_by = "group")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.