library(cellpanelr) library(tidyverse) # convenient functions for data joining and manipulation
# Get the nutlin-3 sensitivity data nutlin <- data_nutlin() # Take a look at this tibble glimpse(nutlin)
# Clean data for next steps nutlin_clean <- nutlin %>% # Add DepMap IDs add_ids(cell = "Cell line") %>% # Remove cell lines that weren't matched to an ID filter(!is.na(depmap_id)) %>% # Remove cell lines without AUC values filter(!is.na(AUC)) glimpse(nutlin_clean)
# Correlate gene expression with nutlin-3 AUC exp_result <- nutlin_clean %>% cor_expression( response = "AUC", ids = "depmap_id" ) glimpse(exp_result) # Merge expression correlations with input nutlin-3 data exp_merged <- nutlin_clean %>% inner_join(data_expression(), by = "depmap_id") %>% left_join(exp_result, by = "gene") glimpse(exp_merged)
# Correlate gene expression with nutlin-3 AUC mut_result <- nutlin_clean %>% cor_mutations( response = "AUC", ids = "depmap_id" ) glimpse(mut_result) # Merge expression correlations with input nutlin-3 data mut_merged <- nutlin_clean %>% inner_join(data_mutations(), by = "depmap_id") %>% left_join(mut_result, by = "gene") glimpse(mut_merged)
# Plot top gene expression biomarkers exp_merged %>% # Filter for 12 genes with strongest negative correlation filter(dense_rank(rho) <= 12) %>% # Convert gene to a factor so that faceted plot is sorted by rho mutate(gene = fct_reorder(gene, rho)) %>% # Create plot ggplot(aes(x = rna_expression, y = AUC)) + geom_point(alpha = 0.2) + geom_smooth(method = "lm", se = FALSE) + xlab("RNA expression (log2[TPM + 1])") + ylab("Area under curve") + ggtitle("Top sensitizing genes") + facet_wrap(~gene, scales = "free") + theme_bw() # Plot top mutation biomarkers mut_merged %>% # Plot only significant mutations filter(significant) %>% # Convert gene to a factor so that faceted plot is sorted by p.value mutate(gene = fct_reorder(gene, p.value)) %>% # Change naming of mutant to be more explicit mutate(mutant = ifelse(mutant, "Mutant", "Wild-type")) %>% mutate(mutant = factor(mutant, levels = c("Wild-type", "Mutant"))) %>% # Create plot ggplot(aes(x = mutant, y = AUC)) + geom_boxplot(outlier.shape = NA) + geom_jitter(aes(color = mutant), width = 0.2, alpha = 0.4) + facet_wrap(~gene) + scale_color_viridis_d(option = "C", end = 0.8) + theme_bw() + theme(legend.position = "none") + xlab("Genotype") + ylab("Area under curve") + ggtitle("Significant mutation biomarkers")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.