Description Format Details References See Also Examples
Cached find.interaction
matrix objects for examples,
diagnostics and vignettes.
Data sets storing find.interaction
matrix objects corresponding to
training data according to the following naming convention:
interaction_iris
- from a randomForestSR[C] for the iris
data set.
interaction_Boston
- from a randomForestS[R]C for the Boston
housing
data set (MASS
package).
interaction_pbc
- from a randomForest[S]RC for the pbc
data set
(randomForestSRC
package)
find.interaction
matrix
Constructing the minimal depth interaction matrices on randomForestsSRC objects are
computationally expensive. We cache find.interaction
matrix objects
to improve the ggRandomForests
examples, diagnostics and vignettes run times.
(see cache_rfsrc_datasets
to rebuild a complete set of these data sets.)
For each data set listed, we build a rfsrc
(see rfsrc_data
), then calculate the minimal depth variable interaction
table with find.interaction
. Each data set is built with the
cache_rfsrc_datasets
with the randomForestSRC
version listed
in the ggRandomForests
DESCRIPTION file.
interaction_iris
- The famous (Fisher's or Anderson's) iris
data set gives
the measurements in centimeters of the variables sepal length and width and
petal length and width, respectively, for 50 flowers from each of 3 species
of iris. Build a classification random forest for predicting the species (setosa,
versicolor, and virginica) on 5 variables (columns) and 150 observations (rows).
interaction_airq
- The airquality
data set is from the New York State
Department of Conservation (ozone data) and the National Weather Service
(meteorological data) collected in New York, from May to September 1973. Build regression
random forest for predicting Ozone
on 5 covariates and 153 observations.
interaction_mtcars
- The mtcars
data was extracted from the 1974 Motor
Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and
performance for 32 automobiles (1973-74 models). Build a regression random forest for
predicting mpg on 10 covariates and 32 observations.
interaction_Boston
- The Boston
housing values in suburbs of Boston from the
MASS
package. Build a regression random forest for predicting medv (median home
values) on 13 covariates and 506 observations.
interaction_pbc
- The pbc
data from the Mayo Clinic trial in primary biliary
cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients,
referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the
randomized placebo controlled trial of the drug D-penicillamine. 312 cases participated in
the randomized trial and contain largely complete data. Data from the randomForestSRC
package. Build a survival random forest for time-to-event death data with 17 covariates and
312 observations (remaining 106 observations are held out).
interaction_veteran
- Veteran's Administration randomized trial of two treatment
regimens for lung cancer. Build a survival random forest for time-to-event death data
with 6 covariates and 137 observations.
#——————— randomForestSRC ———————
Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.5.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.
#——————— Boston data set ———————
Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Harrison, D., and D.L. Rubinfeld. 1978. "Hedonic Prices and the Demand for Clean Air." J. Environ. Economics and Management 5: 81-102.
#——————— Iris data set ———————
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \& Brooks/Cole. (has iris3 as iris.)
Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.
Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.
#——————— pbc data set ———————
Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.
T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, New York. ISBN: 0-387-98784-3.
iris
Boston
pbc
find.interaction
rfsrc_data
cache_rfsrc_datasets
gg_interaction
plot.gg_interaction
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | ## Not run:
#---------------------------------------------------------------------
# iris data - classification random forest
#---------------------------------------------------------------------
# load the rfsrc object from the cached data
data(rfsrc_iris, package="ggRandomForests")
# The interaction table
interaction_iris <- find.interaction(rfsrc_iris)
# plot the forest interaction table
gg_dta <- gg_interaction(interaction_iris)
plot(gg_dta, panel=TRUE)
#---------------------------------------------------------------------
# MASS::Boston data - regression random forest
#---------------------------------------------------------------------
# load the rfsrc object from the cached data
data(rfsrc_Boston, package="ggRandomForests")
# The interaction table
interaction_Boston <- find.interaction(rfsrc_Boston)
# plot the forest interaction table
gg_dta <- gg_interaction(interaction_Boston)
plot(gg_dta, panel=TRUE)
#---------------------------------------------------------------------
# randomForestSRC::pbc data - survival random forest
#---------------------------------------------------------------------
# load the rfsrc object from the cached data
data(rfsrc_pbc, package="ggRandomForests")
# The interaction table
interaction_pbc <- find.interaction(rfsrc_pbc)
# plot the forest interaction table
gg_dta <- gg_interaction(interaction_pbc)
plot(gg_dta, panel=TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.