partial_surface_data: Cached 'plot.variable' objects for examples, diagnostics and...

Description Format Details References See Also Examples

Description

Cached plot.variable objects for examples, diagnostics and vignettes.

Data sets storing plot.variable objects corresponding to training data according to the following naming convention:

Format

list of plot.variable objects

Details

Constructing partial plot data with the randomForestsSRC::plot.variable function are computationally expensive. We cache plot.variable objects to improve the ggRandomForests examples, diagnostics and vignettes run times. (see cache_rfsrc_datasets to rebuild a complete set of these data sets.)

For each data set listed, we build a rfsrc (see rfsrc_data), then calculate the partial plot data with plot.variable function, setting partial=TRUE. Each data set is built with the cache_rfsrc_datasets with the randomForestSRC version listed in the ggRandomForests DESCRIPTION file.

References

#——————— randomForestSRC ———————

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.5.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

#——————— Boston data set ———————

Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Harrison, D., and D.L. Rubinfeld. 1978. "Hedonic Prices and the Demand for Clean Air." J. Environ. Economics and Management 5: 81-102.

#——————— pbc data set ———————

Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.

T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, New York. ISBN: 0-387-98784-3.

See Also

Boston pbc plot.variable rfsrc_data cache_rfsrc_datasets gg_partial plot.gg_partial

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
## Not run: 
#---------------------------------------------------------------------
# MASS::Boston data - regression random forest 
#---------------------------------------------------------------------
# load the rfsrc object from the cached data
data(rfsrc_Boston, package="ggRandomForests")

# The plot.variable call
partial_Boston <- plot.variable(rfsrc_Boston,
                                partial=TRUE, show.plots = FALSE )

# plot the forest partial plots
gg_dta <- gg_partial(partial_Boston)
plot(gg_dta, panel=TRUE)

#---------------------------------------------------------------------
# randomForestSRC::pbc data - survival random forest
#---------------------------------------------------------------------
# load the rfsrc object from the cached data
data(rfsrc_pbc, package="ggRandomForests")

# Restrict the time of interest to less than 5 years.
time_pts <- rfsrc_pbc$time.interest[which(rfsrc_pbc$time.interest<=5)]

# Find the 50 points in time, evenly space along the distribution of 
# event times for a series of partial dependence curves
time_cts <-quantile_pts(time_pts, groups = 50)

# Generate the gg_partial_coplot data object
system.time(partial_pbc_time <- lapply(time_cts, function(ct){
   plot.variable(rfsrc_pbc, xvar = "bili", time = ct,
                 npts = 50, show.plots = FALSE, 
                 partial = TRUE, surv.type="surv")
   }))
#     user   system  elapsed 
# 2561.313   81.446 2641.707 

# Find the quantile points to create 50 cut points
alb_partial_pts <-quantile_pts(rfsrc_pbc$xvar$albumin, groups = 50)

system.time(partial_pbc_surf <- lapply(alb_partial_pts, function(ct){
  rfsrc_pbc$xvar$albumin <- ct
  plot.variable(rfsrc_pbc, xvar = "bili", time = 1,
                npts = 50, show.plots = FALSE, 
                partial = TRUE, surv.type="surv")
  }))
# user   system  elapsed 
# 2547.482   91.978 2671.870 


## End(Not run)

ehrlinger/ggRFVignette documentation built on May 16, 2019, 12:16 a.m.