rfsrc_data: Cached 'rfsrc' objects for examples, diagnostics and...

Description Format Details References See Also Examples

Description

Data sets storing rfsrc objects corresponding to training data according to the following naming convention:

Format

rfsrc object

Details

Constructing random forests are computationally expensive. We cache rfsrc objects to improve the ggRandomForests examples, diagnostics and vignettes run times. (see cache_rfsrc_datasets to rebuild a complete set of these data sets.)

For each data set listed, we build a rfsrc. Tuning parameters used in each case are documented in the examples. Each data set is built with the cache_rfsrc_datasets with the randomForestSRC version listed in the ggRandomForests DESCRIPTION file.

References

#——————— randomForestSRC ———————

Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.5.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.

#——————— Boston data set ———————

Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Harrison, D., and D.L. Rubinfeld. 1978. "Hedonic Prices and the Demand for Clean Air." J. Environ. Economics and Management 5: 81-102.

#——————— Iris data set ———————

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \& Brooks/Cole. (has iris3 as iris.)

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.

#——————— pbc data set ———————

Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.

T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, New York. ISBN: 0-387-98784-3.

See Also

iris Boston pbc rfsrc cache_rfsrc_datasets gg_rfsrc plot.gg_rfsrc gg_error plot.gg_error

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
## Not run: 
#---------------------------------------------------------------------
# iris data - classification random forest
#---------------------------------------------------------------------
# rfsrc grow call
rfsrc_iris <- rfsrc(Species ~., data = iris)

# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_iris)
plot(gg_dta)

# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_iris)
plot(gg_dta)

#---------------------------------------------------------------------
# MASS::Boston data - regression random forest
#---------------------------------------------------------------------
# Load the data...
data(Boston, package="MASS")
Boston$chas <- as.logical(Boston$chas)

# rfsrc grow call
rfsrc_Boston <- rfsrc(medv~., data=Boston)

# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_Boston)
plot(gg_dta)

# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_Boston)
plot(gg_dta)

#---------------------------------------------------------------------
# randomForestSRC::pbc data - survival random forest
#---------------------------------------------------------------------
# Load the data...
# For simplicity here. We do a bit of data tidying
# before running the stored random forest.
data(pbc, package="randomForestSRC")

# Remove non-randomized cases
dta.train <- pbc[-which(is.na(pbc$treatment)),]

# rfsrc grow call
rfsrc_pbc <- rfsrc(Surv(years, status) ~ ., dta.train, nsplit = 10,
                   na.action="na.impute")

# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_pbc)
plot(gg_dta)

# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_pbc)
plot(gg_dta)


## End(Not run)

ehrlinger/ggRFVignette documentation built on May 16, 2019, 12:16 a.m.