Description Format Details References See Also Examples
Data sets storing rfsrc
objects corresponding to
training data according to the following naming convention:
rfsrc_iris
- randomForestSR[C] for the iris
data set.
rfsrc_Boston
- randomForestS[R]C for the Boston
housing
data set (MASS
package).
rfsrc_pbc
- randomForest[S]RC for the pbc
data set
(randomForestSRC
package)
rfsrc
object
Constructing random forests are computationally expensive.
We cache rfsrc
objects to improve the ggRandomForests
examples, diagnostics and vignettes run times.
(see cache_rfsrc_datasets
to rebuild a complete set of these data sets.)
For each data set listed, we build a rfsrc
. Tuning parameters used
in each case are documented in the examples. Each data set is built with the
cache_rfsrc_datasets
with the randomForestSRC
version listed
in the ggRandomForests
DESCRIPTION file.
rfsrc_iris
- The famous (Fisher's or Anderson's) iris
data set gives
the measurements in centimeters of the variables sepal length and width and
petal length and width, respectively, for 50 flowers from each of 3 species
of iris. Build a classification random forest for predicting the species (setosa,
versicolor, and virginica) on 5 variables (columns) and 150 observations (rows).
rfsrc_Boston
- The Boston
housing values in suburbs of Boston from the
MASS
package. Build a regression random forest for predicting medv (median home
values) on 13 covariates and 506 observations.
rfsrc_pbc
- The pbc
data from the Mayo Clinic trial in primary biliary
cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients,
referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the
randomized placebo controlled trial of the drug D-penicillamine. 312 cases participated in
the randomized trial and contain largely complete data. Data from the randomForestSRC
package. Build a survival random forest for time-to-event death data with 17 covariates and
312 observations (remaining 106 observations are held out).
#——————— randomForestSRC ———————
Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.5.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News 7(2), 25-31.
Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests. Ann. Appl. Statist. 2(3), 841-860.
#——————— Boston data set ———————
Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Harrison, D., and D.L. Rubinfeld. 1978. "Hedonic Prices and the Demand for Clean Air." J. Environ. Economics and Management 5: 81-102.
#——————— Iris data set ———————
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \& Brooks/Cole. (has iris3 as iris.)
Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179-188.
Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5.
#——————— pbc data set ———————
Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York: Wiley.
T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag, New York. ISBN: 0-387-98784-3.
iris
Boston
pbc
rfsrc
cache_rfsrc_datasets
gg_rfsrc
plot.gg_rfsrc
gg_error
plot.gg_error
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | ## Not run:
#---------------------------------------------------------------------
# iris data - classification random forest
#---------------------------------------------------------------------
# rfsrc grow call
rfsrc_iris <- rfsrc(Species ~., data = iris)
# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_iris)
plot(gg_dta)
# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_iris)
plot(gg_dta)
#---------------------------------------------------------------------
# MASS::Boston data - regression random forest
#---------------------------------------------------------------------
# Load the data...
data(Boston, package="MASS")
Boston$chas <- as.logical(Boston$chas)
# rfsrc grow call
rfsrc_Boston <- rfsrc(medv~., data=Boston)
# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_Boston)
plot(gg_dta)
# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_Boston)
plot(gg_dta)
#---------------------------------------------------------------------
# randomForestSRC::pbc data - survival random forest
#---------------------------------------------------------------------
# Load the data...
# For simplicity here. We do a bit of data tidying
# before running the stored random forest.
data(pbc, package="randomForestSRC")
# Remove non-randomized cases
dta.train <- pbc[-which(is.na(pbc$treatment)),]
# rfsrc grow call
rfsrc_pbc <- rfsrc(Surv(years, status) ~ ., dta.train, nsplit = 10,
na.action="na.impute")
# plot the forest generalization error convergence
gg_dta <- gg_error(rfsrc_pbc)
plot(gg_dta)
# Plot the forest predictions
gg_dta <- gg_rfsrc(rfsrc_pbc)
plot(gg_dta)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.