assign("lincrna", readRDS(paste0(pathi, "/data/lincrnaDF.rds")), envir=globalenv())
# ggvenn::ggvenn(list(names1 = lngrna_in_data1, names2 = lngrna_in_data2))
lncrna_overlap = unique(lincrna$hgnc_symbol)[unique(lincrna$hgnc_symbol) %in% unique(c(unique(lincrna$hgnc_symbol)[unique(lincrna$hgnc_symbol) %in% colnames(results$loadings[[1]])],
c(colnames(results$loadings[[1]])[grep("-AS", colnames(results$loadings[[1]]))],
colnames(results$loadings[[1]])[grep("LINC", colnames(results$loadings[[1]]))]))) ]
assign("lncrna_overlap", lncrna_overlap, envir=globalenv())
EnumSDA = function(geneV = NULL, Ladings = NULL){
NegLoaded_top = lapply(1:150, function(x){
SDA_comp = Ladings[x, ]
top_load_genes = sort(SDA_comp, decreasing = F) %>% head(200)
geneV_in_top = intersect(geneV, names(top_load_genes))
geneV_in_top
})
PosLoaded_top = lapply(1:150, function(x){
SDA_comp = Ladings[x, ]
top_load_genes = sort(SDA_comp, decreasing = T) %>% head(200)
geneV_in_top = intersect(geneV, names(top_load_genes))
geneV_in_top
})
N_overlap_NegLoaded = unlist(lapply(NegLoaded_top, function(x){
length(x)
}))
N_overlapp_PosLoaded = unlist(lapply(PosLoaded_top, function(x){
length(x)
}))
dfm1 = data.frame(NegN = N_overlap_NegLoaded,
PosN= N_overlapp_PosLoaded,
comp = paste0("SDA", 1:150),
row.names = paste0("SDA", 1:150))
return(list(DF = dfm1,
PosLoaded_top = PosLoaded_top,
NegLoaded_top = NegLoaded_top))
}
assign("lncLS", EnumSDA(geneV = lncrna_overlap, Ladings = results$loadings[[1]]), envir=globalenv())
sigComps = apply(lncLS$DF[,1:2], 1, function(x){
any(x>22.3)
})
assign("sigComps", sigComps, envir=globalenv())
plot_multi_histogram <- function(df, feature, label_column) {
plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
geom_histogram(alpha=0.9, position="identity", aes(y = ..density..), color="black", bins = 50) +
geom_density(alpha=0.4) +
# geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", size=1) +
labs(x=feature, y = "Density")
plt + guides(fill=guide_legend(title=label_column))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.