Description Objects from the Class Slots Methods Author(s) See Also Examples
The Kernel Quantile Regression object class
Objects can be created by calls of the form new("kqr", ...).
or by calling the kqr function
kernelf:Object of class "kfunction" contains
the kernel function used
kpar:Object of class "list" contains the
kernel parameter used
coef:Object of class "ANY" containing the model parameters
param:Object of class "list" contains the
cost parameter C and tau parameter used
kcall:Object of class "list" contains the used
function call
terms:Object of class "ANY" contains the
terms representation of the symbolic model used (when using a formula)
xmatrix:Object of class "input" containing
the data matrix used
ymatrix:Object of class "output" containing the
response matrix
fitted:Object of class "output" containing the
fitted values
alpha:Object of class "listI" containing the
computes alpha values
b:Object of class "numeric" containing the
offset of the model.
scalingObject of class "ANY" containing
the scaling coefficients of the data (when case scaled = TRUE is used).
error:Object of class "numeric" containing the
training error
cross:Object of class "numeric" containing the
cross validation error
n.action:Object of class "ANY" containing the
action performed in NA
nclass:Inherited from class vm, not used in kqr
lev:Inherited from class vm, not used in kqr
type:Inherited from class vm, not used in kqr
signature(object = "kqr"): returns the
coefficients (alpha) of the model
signature(object = "kqr"): returns the alpha
vector (identical to coef)
signature(object = "kqr"): returns the offset beta
of the model.
signature(object = "kqr"): returns the cross
validation error
signature(object = "kqr"): returns the
training error
signature(object = "vm"): returns the fitted values
signature(object = "kqr"): returns the call performed
signature(object = "kqr"): returns the
kernel function used
signature(object = "kqr"): returns the kernel
parameter used
signature(object = "kqr"): returns the
cost regularization parameter C and tau used
signature(object = "kqr"): returns the
data matrix used
signature(object = "kqr"): returns the
response matrix used
signature(object = "kqr"): returns the
scaling coefficients of the data (when scaled = TRUE is used)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))
# first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)
# predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")
# calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",
kpar = list(sigma = 10), C = 0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")
# print model coefficients and other information
coef(qrm)
b(qrm)
error(qrm)
kernelf(qrm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.