# ==========================================================================
# Some random plots
# ==========================================================================
#
# Compare countries
#
lag_FR <- 8
lag_IT <- 0
lag_UK <- 14
df_data_ecdc %>%
count(country) %>%
as.data.frame()
df_data_ecdc %>%
mutate(
date_rep = case_when(
country == "France" ~ date_rep - lag_FR,
country == "Italy" ~ date_rep - lag_IT,
country == "United Kingdom" ~ date_rep - lag_UK,
TRUE ~ date_rep
)
) %>%
filter(country %in% c("France", "Italy", "United Kingdom"), date_rep > as.Date("2020-02-15")) %>%
ggplot(aes(x = date_rep, y = value, colour = country)) +
facet_wrap(~time_series, scales = "free_y", ncol = 1) +
geom_line() +
geom_point(aes(shape = country)) +
theme_light() +
scale_y_log10()
#
# Compare lockdown countries
#
date_lockdown_china <- df_data_intervention %>%
filter(country == "China", intervention == "Lockdown") %>%
.$date_start
df_data_inter_plot <- df_data_intervention %>%
filter(intervention == "Lockdown", !region %in% c("Lombardie")) %>%
mutate(lag = date_start - date_lockdown_china, date_start_rescaled = date_start - lag)
lag_FR <- df_data_inter_plot %>%
filter(country == "France") %>%
.$lag
lag_IT <- df_data_inter_plot %>%
filter(country == "Italy") %>%
.$lag
df_data_plot <- df_data_who %>%
filter(country %in% c("Italy", "France", "China") & is.na(region), value < 10000, date_rep > as.Date("2020-01-01")) %>%
mutate(
date_rep = case_when(
country == "France" ~ date_rep - lag_FR,
country == "Italy" ~ date_rep - lag_IT,
country == "China" ~ date_rep,
TRUE ~ date_rep
)
)
p <- ggplot(df_data_plot) + facet_wrap(~time_series, scales = "free_y", ncol = 1)
p <- p + geom_line(data = df_data_plot, aes(x = date_rep, y = value, colour = country))
p <- p + geom_vline(data = df_data_inter_plot, aes(xintercept = date_start_rescaled))
p <- p + theme_light() + xlim(as.Date(c("2020-01-01", NA)))
print(p)
#
# Compare sources
#
df_data_compare <- df_data_ecdc %>% bind_rows(df_data_jhu_country, df_data_spf, df_data_who)
df_data_ecdc %>%
filter(country == "France") %>%
View()
## France
df_data_compare %>%
filter(country == "France", date_rep > as.Date("2020-02-20")) %>%
ggplot(aes(x = date_rep, y = value, colour = source)) +
facet_wrap(~time_series, scales = "free_y", ncol = 1) +
geom_line() + theme_light() +
scale_colour_brewer(palette = "Dark2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.