library("readxl")
library("here")
library("tidyverse")
library("lubridate")
library("stringi")
library("readr")
library("vroom")
library("janitor")
library("sf")
###########################
# PCR incidence data
read_excel(here::here("data-raw", "data", "COVID_pozitiv_Okr_20201112.xlsx"), skip = 2) %>%
janitor::clean_names() %>%
rename(date = datum,
region = kraj,
county = okres,
PCR.pos = pocet_pozitivnych_pripadov_za_dany_den) %>%
mutate(pil = as.factor(0 + (county %in% c("Námestovo","Tvrdosín","Dolný Kubín","Bardejov")) )) %>%
mutate(pilot = recode(pil, '0'="Other regions", '1'="Pilot regions")) -> PCR.inc
save(PCR.inc, file = here::here("data", "PCR.inc.rdata"))
###############
# Testing data (prevalence)
ms.tst <- suppressMessages(
read_excel(here::here("data-raw", "data", "Plosne testovanie.xlsx"), skip = 1, n_max = 81)) %>%
janitor::clean_names() %>%
rename(pop = x2,
attendance_1 = pilot_23_to_25_oct,
attendance_prop_1 = x4,
positive_1 = x5,
positive_prop_1 = x6,
se_1 = x7,
min_1 = x8,
max_1 = x9,
attendance_2 = first_round_31_oct_and_1_nov,
attendance_prop_2 = x11,
positive_2 = x12,
positive_prop_2 = x13,
se_2 = x14,
min_2 = x15,
max_2 = x16,
growth_min_2 = x17,
growth_max_2 = x18,
R_min_2 = x19,
R_max_2 = x20,
attendance_3 = second_round_7_and_8_nov,
attendance_prop_3 = x22,
positive_3 = x23,
positive_prop_3 = x24,
se_3 = x25,
min_3 = x26,
max_3 = x27,
growth_min_3 = x28,
growth_max_3 = x29,
R_min_3 = x30,
R_max_3 = x31) %>%
filter(!is.na(county)) %>%
mutate_at(vars(-county), as.numeric) %>%
filter(!is.na(pop)) %>%
mutate(pilot = !is.na(attendance_1)) %>%
left_join(PCR.inc[!duplicated(PCR.inc$county),c("county","region")],by="county") %>%
mutate(region = ifelse(str_sub(county,start=1,end=10)=="Bratislava","Bratislavský kraj",region)) %>%
mutate(region = ifelse(str_sub(county,start=1,end=6)=="Kosice","Kosický kraj",region))
save(ms.tst, file = here::here("data", "ms.tst.rdata"))
## Google mobility data
read_csv("https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv") %>%
filter(country_region == "Slovakia",
date > ymd("2020-01-01"),
date < ymd("2020-11-20"),
!is.na(sub_region_1)) -> mob.slo
save(mob.slo, file = here::here("data", "mob.slo.rdata"))
## Reproduction numbers
Rts <- read_csv(here::here("data-raw/data/rt/rt.csv"))
## Rt estimate from the 22nd of October in all counties as the
## day before mass testing
## for some counties this will be as estimated last day of observed data - 7 days
## this assumes no change beyond the support of the data
Rt.county <- Rts %>%
filter(date == "2020-10-22") %>%
select(county, R = median)
save(Rt.county, file = here::here("data", "R.county.rdata"))
prevalence.samples <-
vroom(here::here("data-raw", "data", "rt", "prevalence-samples.csv"))
save(prevalence.samples, file = here::here("data", "prevalence.samples.rdata"))
## Prevalence covariates
unemp <-
read_excel(here::here("data-raw", "data", "indicators", "MS_2011-1.xlsx"),
sheet = "Tab1", skip = 9) %>%
clean_names() %>%
select(county = x1, active = x12, unemployed = x13)
roma <-
read_excel(here::here("data-raw", "data", "indicators",
"Roma Atlas 2019-1.xlsx"),
sheet = "RESULTS", skip = 1) %>%
clean_names() %>%
mutate(proportion_roma =
(proportion_roma_upper - proportion_roma_lower) / 2) %>%
mutate(county = sub("-", " - ", county))
age <-
read_excel(here::here("data-raw", "data", "indicators",
"slovakia_mean_age_by_district.xlsx"),
skip = 5) %>%
clean_names() %>%
select(county = x1, mean_age = x2019) %>%
filter(grepl("^District of", county)) %>%
mutate(county = sub("District of ", "", county),
county = sub(" ", " ", county)) %>%
mutate(county = recode(county, `Śaľa` = "Šaľa"))
pop_dens <-
read_excel(here::here("data-raw", "data", "indicators",
"slovakia_pop_dens_by_district.xlsx"),
skip = 5) %>%
clean_names() %>%
select(county = x1, pop_dens = x2019) %>%
filter(grepl("^District of", county)) %>%
mutate(county = sub("District of ", "", county),
county = sub(" ", " ", county)) %>%
mutate(county = recode(county, `Śaľa` = "Šaľa"))
covariates <- list(unemp = unemp,
roma = roma,
age = age,
pop_dens = pop_dens)
save(covariates, file = here::here("data", "covariates.rdata"))
slovakia_shape <-
st_read(here::here("data-raw", "data", "USJ_hranice_2.gpkg"))
st_crs(slovakia_shape) <- 4326 ## fix GDAL version mismatch
slovakia_shape <- slovakia_shape %>%
group_by(county = LAU1) %>%
summarise(geometry = st_union(Shape)) %>%
ungroup()
save(slovakia_shape, file = here::here("data", "slovakia_shape.rdata"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.