EmpiricalBayesPrior: Computes the prior parameters (i.e. pseudocounts incremented...

View source: R/psi_lfc.R

EmpiricalBayesPriorR Documentation

Computes the prior parameters (i.e. pseudocounts incremented by 1) for the log2 fold change distribution

Description

Computes the prior parameters (i.e. pseudocounts incremented by 1) for the log2 fold change distribution

Usage

EmpiricalBayesPrior(A, B, min.sd = 0)

Arguments

A

Vector of counts from condition A

B

Vector of counts from condition B

min.sd

minimal standard deviation of the prior

Value

A vector of length 2 containing the two parameters

See Also

PsiLFC

Examples

  EmpiricalBayesPrior(rnorm(1000,200),rnorm(1000,100))

erhard-lab/lfc documentation built on April 25, 2023, 6:59 a.m.