################################################################################
################################################################################
# Humpback whales ANALYSIS
################################################################################
################################################################################
library(dplyr)
library(ggplot2)
library(devtools)
document()
################################################################################
################################################################################
# Encounter rate
# Common inputs
(whales <- humpback_params())
runs <- 100
iterations <- 100
# Vessels 2019
data(ais_2019) ; vessels <- ais_2019
outcome_dir <- 'tests/hw/ais_2019/'
encounter_rate(vessels, whales, outcome_dir,
month_batches = list(winter = c(0:4, 11:12),
summer = 5:10),
runs = runs, iterations = iterations, toplot = FALSE)
# Vessels 2015
data(ais_2015)
encounter_rate(vessels = ais_2015,
whales = whales,
outcome_dir = 'tests/hw/ais_2015/',
month_batches = list(winter = c(0:4, 11:12),
summer = 5:10),
runs = 100, iterations = 100, toplot = FALSE)
# LNG Canada
data(lng_canada) ; vessels <- lng_canada
outcome_dir <- 'tests/hw/lng_canada/'
encounter_rate(vessels, whales, outcome_dir,
month_batches = list(all = 1:12),
runs = runs, iterations = iterations, toplot = TRUE)
# Cedar LNG
data(cedar_lng) ; vessels <- cedar_lng
outcome_dir <- 'tests/hw/cedar_lng/'
encounter_rate(vessels, whales, outcome_dir,
month_batches = list(all = 1:12),
runs = runs, iterations = iterations, toplot = FALSE)
################################################################################
################################################################################
# Predict outcomes
# Common datasets to all analyses ==============================================
species <- 'hw'
whale <- readRDS('tests/hw/pwhale_seasonal_boots.RData')
seasonal <- NULL
data(p_surface)
surface <- p_surface
asymptote_scaling <- NULL
# 2019 traffic ================================================================
data(ais_2019) ; traffic <- ais_2019
(vessels <- unique(traffic$type))
p_encounter_dir <- NULL
(outcome_dir <- 'tests/hw/ais_2019/') %>% dir
data(p_collision) ; (avoidance <- p_collision)
data(p_lethality) ; (lethality <- p_lethality)
month_batches <- list(winter = c(0:4, 11:12), summer = 5:10)
outcome_predict(traffic,
scale_factors=NULL,
whale,
seasonal,
p_encounter_dir,
surface,
avoidance,
lethality,
outcome_dir,
asymptote_scaling = asymptote_scaling,
month_batches = month_batches,
species=species,
year=2019,
iterations = 1000)
# 2015 traffic ================================================================
data(ais_2015)
data(p_collision)
data(p_lethality)
outcome_predict(traffic = ais_2015,
scale_factors=NULL,
whale = whale,
seasonal = NULL,
p_encounter_dir = NULL,
surface = p_surface,
avoidance = p_collision,
lethality = p_lethality,
outcome_dir = 'tests/hw/ais_2015/',
asymptote_scaling = NULL,
month_batches = list(winter = c(0:4, 11:12), summer = 5:10),
species = species,
year = 2015,
iterations = 1000)
# 2030 traffic =================================================================
data(ais_2019) ; traffic <- ais_2019
(vessels <- unique(traffic$type))
(scale_factors <- readRDS('tests/ais/vessel_trends.RData'))
p_encounter_dir <- 'tests/hw/ais_2019/'
outcome_dir <- 'tests/hw/ais_2030/'
data(p_collision) ; (avoidance <- p_collision)
data(p_lethality) ; (lethality <- p_lethality)
month_batches <- list(winter = c(0:4, 11:12), summer = 5:10)
# Run outcome predictions
outcome_predict(traffic,
scale_factors,
whale,
seasonal,
p_encounter_dir,
surface,
avoidance,
lethality,
outcome_dir,
asymptote_scaling = asymptote_scaling,
month_batches = month_batches,
species=species,
year=2030,
iterations = 1000)
# LNG Canada (8 - 14 knots) ===================================================
data(lng_canada) ; traffic <- lng_canada
(vessels <- unique(traffic$type))
p_encounter_dir <- NULL
outcome_dir <- 'tests/hw/lng_canada/'
data(p_collision) ; (avoidance <- p_collision)
data(p_lethality) ; (lethality <- p_lethality)
(avoidance <- avoidance[c(2,4),])
(avoidance$type <- c(paste(vessels[3:4], collapse=' | '),
paste(vessels[1:2], collapse=' | ')))
avoidance
(lethality <- lethality[c(2,4),])
(lethality$type <- c(paste(vessels[3:4], collapse=' | '),
paste(vessels[1:2], collapse=' | ')))
lethality
month_batches <- list(all = 0:12)
# Run outcome predictions
outcome_predict(traffic,
scale_factors=NULL,
whale,
seasonal,
p_encounter_dir,
surface,
avoidance,
lethality,
outcome_dir,
asymptote_scaling = asymptote_scaling,
month_batches = month_batches,
species=species,
year=2030,
iterations = 1000)
# Cedar LNG (8 - 14 knots) ====================================================
data(cedar_lng) ; traffic <- cedar_lng
(vessels <- unique(traffic$type))
p_encounter_dir <- NULL
outcome_dir <- 'tests/hw/cedar_lng/'
data(p_collision) ; (avoidance <- p_collision)
data(p_lethality) ; (lethality <- p_lethality)
(avoidance <- avoidance[c(2,4),])
(avoidance$type <- c(paste(vessels[3:4], collapse=' | '),
paste(vessels[1:2], collapse=' | ')))
avoidance
(lethality <- lethality[c(2,4),])
(lethality$type <- c(paste(vessels[3:4], collapse=' | '),
paste(vessels[1:2], collapse=' | ')))
lethality
month_batches <- list(all = 0:12)
# Run outcome predictions
outcome_predict(traffic,
scale_factors=NULL,
whale,
seasonal,
p_encounter_dir,
surface,
avoidance,
lethality,
outcome_dir,
asymptote_scaling = asymptote_scaling,
month_batches = month_batches,
species=species,
year=2030,
iterations = 1000)
################################################################################
################################################################################
# Put all outcomes in a list
hw <- list(params = humpback_params(),
p_encounter = list(ais_2015 = readRDS('tests/hw/ais_2015/p_encounter.RData'),
ais_2019 = readRDS('tests/hw/ais_2019/p_encounter.RData'),
lng_canada = readRDS('tests/hw/lng_canada/p_encounter.RData'),
cedar_lng = readRDS('tests/hw/cedar_lng/p_encounter.RData')),
outcomes = list(ais_2015 = readRDS('tests/hw/ais_2015/outcomes.RData'),
ais_2019 = readRDS('tests/hw/ais_2019/outcomes.RData'),
ais_2030 = readRDS('tests/hw/ais_2030/outcomes.RData'),
lng_canada = readRDS('tests/hw/lng_canada/outcomes.RData'),
cedar_lng = readRDS('tests/hw/cedar_lng/outcomes.RData')),
grid = list(ais_2015 = readRDS('tests/hw/ais_2015/outcomes_grid.RData'),
ais_2019 = readRDS('tests/hw/ais_2019/outcomes_grid.RData'),
ais_2030 = readRDS('tests/hw/ais_2030/outcomes_grid.RData'),
lng_canada = readRDS('tests/hw/lng_canada/outcomes_grid.RData'),
cedar_lng = readRDS('tests/hw/cedar_lng/outcomes_grid.RData')))
# Review
hw$p_encounter$ais_2015 %>% head
hw$outcomes$ais_2015 %>% head(1)
hw$outcomes$ais_2019 %>% head(1)
hw$outcomes$ais_2030 %>% head(1)
hw$grid$ais_2015 %>% head(1)
hw$grid$ais_2019 %>% head(1)
hw$grid$ais_2030 %>% head(1)
# Make any fixes needed here
# Save to file
saveRDS(hw, file='tests/hw/results.RData')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.