#' @title stat_smooth_func
#' @export
#' @description mostly taken from https://stackoverflow.com/questions/7549694/adding-regression-line-equation-and-r2-on-graph
#' @param mapping mapping
#' @param data data
#' @param geom geom
#' @param position pos
#' @param ... extra
#' @param method method
#' @param formula form
#' @param se se
#' @param n n
#' @param span span
#' @param fullrange full
#' @param level lev
#' @param method.args x
#' @param na.rm na.rm
#' @param show.legend y
#' @param inherit.aes z
#' @param xpos a
#' @param ypos b
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#' iris %>%
#' ggplot(aes(x = Sepal.Width, y = Petal.Width, color = Species)) +
#' geom_point() +
#' stat_smooth_func(geom = "text", method = "lm", parse = TRUE, hjust = 0) +
#' facet_wrap(~Species)
stat_smooth_func <- function(mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = "auto",
formula = y ~ x,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
level = 0.95,
method.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
xpos = NULL,
ypos = NULL) {
ggplot2::layer(
data = data,
mapping = mapping,
stat = StatSmoothFunc,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
method = method,
formula = formula,
se = se,
n = n,
fullrange = fullrange,
level = level,
na.rm = na.rm,
method.args = method.args,
span = span,
xpos = xpos,
ypos = ypos,
...
)
)
}
StatSmoothFunc <- ggplot2::ggproto(
"StatSmooth", ggplot2::Stat,
setup_params = function(data, params) {
# Figure out what type of smoothing to do: loess for small datasets,
# gam with a cubic regression basis for large data
# This is based on the size of the _largest_ group.
if (identical(params$method, "auto")) {
max_group <- max(table(data$group))
if (max_group < 1000) {
params$method <- "loess"
} else {
params$method <- "gam"
params$formula <- y ~ s(x, bs = "cs")
}
}
if (identical(params$method, "gam")) {
params$method <- mgcv::gam
}
params
},
compute_group = function(data, scales, method = "auto", formula = y ~ x,
se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
xseq = NULL, level = 0.95, method.args = list(),
na.rm = FALSE, xpos = NULL, ypos = NULL) {
if (length(unique(data$x)) < 2) {
# Not enough data to perform fit
return(data.frame())
}
if (is.null(data$weight)) data$weight <- 1
if (is.null(xseq)) {
if (is.integer(data$x)) {
if (fullrange) {
xseq <- scales$x$dimension()
} else {
xseq <- sort(unique(data$x))
}
} else {
if (fullrange) {
range <- scales$x$dimension()
} else {
range <- range(data$x, na.rm = TRUE)
}
xseq <- seq(range[1], range[2], length.out = n)
}
}
# Special case span because it's the most commonly used model argument
if (identical(method, "loess")) {
method.args$span <- span
}
if (is.character(method)) method <- match.fun(method)
base.args <- list(quote(formula), data = quote(data), weights = quote(weight))
model <- do.call(method, c(base.args, method.args))
m <- model
eq <- substitute(
italic(r)^2 ~ "=" ~ r2,
list(r2 = format(summary(m)$r.squared, digits = 3))
)
func_string <- as.character(as.expression(eq))
if (is.null(xpos)) xpos <- min(data$x) * 0.95
if (is.null(ypos)) ypos <- max(data$y) * 0.95
data.frame(x = xpos, y = ypos, label = func_string)
},
required_aes = c("x", "y")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.