library(GSImulator)
library(rubias)
library(dplyr)
# just configuring some migration rates.
Nmix <- 1000
Dpar <- 1.5
ruDpar <- 1.5
Npop <- 17
rs <- rep(144, Npop) # refsizes
ru <- c(2, 3, 12)
ms <- {
rut <- rgamma(length(ru), shape = ruDpar, scale = 10)
rut <- rut / sum(rut)
pvec <- lapply(1:length(rut), function(x) {
tmp <- rgamma(ru[x], shape = Dpar, scale = 10)
tmp <- tmp / sum(tmp)
tmp <- tmp * rut[x]
}) %>%
unlist
rmultinom(1, size = Nmix, prob = pvec)[,1]
}
TruePi <- pvec
GSImulate(refsizes = rs,
mixsizes = ms,
num_loci = 20,
num_sets = 1,
variability_string = " -t 0.3 ",
marker_pars = " -u .15 3 ",
M_matrix = sh_island_mig_mat(ru = c(2, 3, 12), Min = 40, Mbt = 3.0))
#lapply(1:2, function(x) as.data.frame(basefile2fst(x)))
reppy_frame <- data_frame(repunit = paste("repu", rep(1:3, ru), sep = "_"),
collection = paste("Pop", 1:Npop, sep = "_"))
indat <- gsim2bhru(1, reppy_frame)
oup <- ref_and_mix_pipeline(reference = indat %>% filter(sample_type == "reference"),
mixture = indat %>% filter(sample_type == "mixture"),
gen_start_col = 5,
method = "MCMC")
ref <- indat %>% filter(sample_type == "reference") %>%
mutate(collection = factor(collection, levels = unique(collection)),
repunit = factor(repunit, levels = unique(repunit)))
Hasselman_simulation_pipeline(reference = ref, gen_start_col = 5, seed = 345)
bias_comparison(reference = ref, gen_start_col = 5, seed = 345)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.