#' Calculate Sigma and G matrices for Pseudo-likelihood Negative Binomial Mixed Model
#'
#' Calculates the Sigma and G components described in Kenward and
#' Roger (1997) while accounting for \code{glmm_nb_mod} object
#' weights. Function is used in calculating Kenward-Roger degrees of
#' freedom in functions from the \pkg{pbkrtest}-package such as \code{KRmodcomp}.
#' @importFrom pbkrtest get_SigmaG
#' @param object A \code{glmm_nb_mod} model object from the \code{glmm_nb_lmer} function
#' @param details If larger than 0 some timing details are printed.
#' @return
#' \item{Sigma}{The covariance matrix of Y}
#' \item{G}{The G matrices that sum up to Sigma}
#' \item{n.ggamma}{The number of G matrices (Called M in Kenward and Roger 1997)}
#'
#' @author Elizabeth Wynn and Camille Moore, underlying code drawn from code by \pkg{pbkrtest}-authors.
#'
#' @seealso \code{\link{glmm_nb_mod}}, \code{\link[pbkrtest]{get_SigmaG}}, \code{\link[pbkrtest]{KRmodcomp}}
#'
#' @references
#' Kenward MG, Roger JH (1997). "Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood." \emph{Biometrics}, 53(3), 983. ISSN 0006341X. doi: 10.2307/2533558.
#'
#'@export
#'@importFrom methods as signature
#'
#Code from get_SigmaG.lmerMod function except where indicated
get_SigmaG.glmm_nb_mod <- function(object, details=0) {
DB <- details > 0 ## For debugging only
GGamma <- VarCorr(object)
SS <- .shgetME( object )
## Put covariance parameters for the random effects into a vector:
## Fixme: It is a bit ugly to throw everything into one long vector here; a list would be more elegant
ggamma <- NULL
for ( ii in 1:( SS$n.RT )) {
Lii <- GGamma[[ii]]
ggamma <- c(ggamma, Lii[ lower.tri( Lii, diag=TRUE ) ] )
}
ggamma <- c( ggamma, sigma( object )^2 ) ## Extend ggamma by the residuals variance
n.ggamma <- length(ggamma)
## Find G_r:
G <- NULL
Zt <- getME( object, "Zt" )
for (ss in 1:SS$n.RT) {
ZZ <- .shget_Zt_group( ss, Zt, SS$Gp )
n.lev <- SS$n.lev.by.RT2[ ss ] ## ; cat(sprintf("n.lev=%i\n", n.lev))
Ig <- sparseMatrix(1:n.lev, 1:n.lev, x=1)
for (rr in 1:SS$n.parm.by.RT[ ss ]) {
## This is takes care of the case where there is random regression and several matrices have to be constructed.
## FIXME: I am not sure this is correct if there is a random quadratic term. The '2' below looks suspicious.
ii.jj <- .index2UpperTriEntry( rr, SS$n.comp.by.RT[ ss ] ) ##; cat("ii.jj:"); print(ii.jj)
ii.jj <- unique(ii.jj)
if (length(ii.jj)==1){
EE <- sparseMatrix(ii.jj, ii.jj, x=1, dims=rep(SS$n.comp.by.RT[ ss ], 2))
} else {
EE <- sparseMatrix(ii.jj, ii.jj[2:1], dims=rep(SS$n.comp.by.RT[ ss ], 2))
}
EE <- Ig %x% EE ## Kronecker product
G <- c( G, list( t(as.matrix(ZZ)) %*% EE %*% ZZ ) ) #changed to as.matrix because t() won't work on sparse matrix
}
}
## Extend by the indentity for the residual
n.obs <- nrow(getME(object,'X'))
##########Adjusted from pbkrtest package to include weights##########
#G <- c( G, list(sparseMatrix(1:n.obs, 1:n.obs, x=1 )) ) #### CMM Old Code
G <- c( G, list(Matrix(diag(1/attributes(object)$frame$"(weights)"), sparse=T)) ) ### CMM new line to use weights
Sigma <- ggamma[1] * G[[1]]
for (ii in 2:n.ggamma) {
Sigma <- Sigma + ggamma[ii] * G[[ii]]
}
SigmaG <- list(Sigma=Sigma, G=G, n.ggamma=n.ggamma)
SigmaG
}
##############################################
#Helper functions from the pbkrtest package
##############################################
.shgetME<-function (object)
{
Gp <- getME(object, "Gp")
n.RT <- length(Gp) - 1
n.lev.by.RT <- sapply(getME(object, "flist"), function(x) length(levels(x)))
n.comp.by.RT <- .get.RT.dim.by.RT(object)
n.parm.by.RT <- (n.comp.by.RT + 1) * n.comp.by.RT/2
n.RE.by.RT <- diff(Gp)
n.lev.by.RT2 <- n.RE.by.RT/n.comp.by.RT
list(Gp = Gp, n.RT = n.RT, n.lev.by.RT = n.lev.by.RT, n.comp.by.RT = n.comp.by.RT,
n.parm.by.RT = n.parm.by.RT, n.RE.by.RT = n.RE.by.RT,
n.lev.by.RT2 = n.lev.by.RT2, n_rtrms = getME(object,
"n_rtrms"))
}
.get.RT.dim.by.RT<-function (object)
{
qq <- if (inherits(object, "mer")) {
sapply(object@ST, function(X) nrow(X))
}
else {
sapply(object@cnms, length)
}
qq
}
.shget_Zt_group<-function (ii.group, Zt, Gp, ...)
{
zIndex.sub <- (Gp[ii.group] + 1):Gp[ii.group + 1]
ZZ <- Zt[zIndex.sub, ]
return(ZZ)
}
.index2UpperTriEntry<-function (k, N)
{
aa <- cumsum(N:1)
aaLow <- c(0, aa[-length(aa)])
i <- which(aaLow < k & k <= aa)
j <- k - N * i + N - i * (3 - i)/2 + i
return(c(i, j))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.