library(testthat)
library(enetLTS)
test_that("weights functions works", {
## for gaussian
set.seed(86)
n <- 100; p <- 25 # number of observations and variables
beta <- rep(0,p); beta[1:6] <- 1 # 10\% nonzero coefficients
sigma <- 0.5 # controls signal-to-noise ratio
x <- matrix(rnorm(n*p, sigma),nrow=n)
e <- rnorm(n,0,1) # error terms
eps <- 0.1 # contamination level
m <- ceiling(eps*n) # observations to be contaminated
eout <- e; eout[1:m] <- eout[1:m] + 10 # vertical outliers
yout <- c(x %*% beta + sigma * eout) # response
xout <- x; xout[1:m,] <- xout[1:m,] + 10 # bad leverage points
set.seed(86)
fit1 <- enetLTS(xout,yout,crit.plot=FALSE)
weights.fit11 <- weights.enetLTS(fit1)
expect_equal( weights.fit11,fit1$wt)
weights.fit12 <- weights.enetLTS(fit1,vers="raw")
expect_equal( weights.fit12,fit1$raw.wt)
## for binomial
eps <-0.05 # \%10 contamination to only class 0
m <- ceiling(eps*n)
y <- sample(0:1,n,replace=TRUE)
xout <- x
xout[y==0,][1:m,] <- xout[1:m,] + 10; # class 0
yout <- y # wrong classification for vertical outliers
set.seed(86)
fit2 <- enetLTS(xout,yout,family="binomial",crit.plot=FALSE)
weights.fit21 <- weights.enetLTS(fit2)
expect_equal( weights.fit21,fit2$wt)
weights.fit22 <- weights.enetLTS(fit2,vers="raw")
expect_equal(weights.fit22,fit2$raw.wt)
## for multinomial
n <- 120; p <- 15
NC <- 3 # number of groups
X <- matrix(rnorm(n * p), n, p)
betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE)
betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas)
lv <- cbind(1,X)%*%betas
probs <- exp(lv)/apply(exp(lv),1,sum)
y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)})
xout <- X
eps <-0.05 # \%10 contamination to only class 0
m <- ceiling(eps*n)
xout[1:m,] <- xout[1:m,] + 10 # bad leverage points
yout <- y
fit3 <- enetLTS(xout,yout,family="multinomial",crit.plot=FALSE)
weights.fit31 <- weights.enetLTS(fit3)
expect_equal( weights.fit31,fit3$wt)
weights.fit32 <- weights.enetLTS(fit3,vers="raw")
expect_equal(weights.fit32,fit3$raw.wt)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.