Description Usage Arguments Details Value Author(s) Examples
Function handles the regression part
1 | OveDisPoiReg(Y, X, X0 = NULL, xival = NULL, alpha = 0.05, tol = 10^(-5))
|
Y |
data |
X |
data |
X0 |
prediction |
xival |
over-dispersion parameter, xi |
alpha |
alpha |
tol |
approximation tolerance |
Okay
list
E. A. Pena
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (Y, X, X0 = NULL, xival = NULL, alpha = 0.05, tol = 10^(-5))
{
p = dim(X)[2]
n = dim(X)[1]
if (is.null(X0)) {
X0 = X
}
m = dim(X0)[1]
Xmean = apply(X, 2, "mean")
Xstd = apply(X, 2, "sd")
XS = X
X0S = X0
for (j in 2:p) {
XS[, j] = (X[, j] - Xmean[j])/Xstd[j]
X0S[, j] = (X0[, j] - Xmean[j])/Xstd[j]
}
outglm = glm(Y ~ XS[, -1], family = poisson(link = log))
outglmsumm = summary(outglm)
theta = outglm$coefficients
if (is.null(xival)) {
xi = NewtRaphXi(1, theta, Y, XS, tol)$xi
}
else {
xi = Inf
}
XiCov = NewtRaph(theta, xi, Y, XS, tol)$XiCov
XiCov11 = XiCov[1:p, 1:p]
rho0 = exp(X0S %*% theta)
zcrit = qnorm(1 - alpha/2)
PE = rep(0, m)
PE2 = rep(0, m)
for (i in 1:m) {
PE[i] = zcrit * sqrt(rho0[i] + rho0[i] * (1 + rho0[i])/xi +
(1/n) * (rho0[i]^2) * (t(X0S[i, ]) %*% XiCov11) %*%
X0S[i, ])
}
PILow = rho0 - PE
PIHig = rho0 + PE
for (i in 1:m) {
PILow[i] = max(0, PILow[i])
}
return(list(outglm = outglm, outglmsumm = outglmsumm, theta = theta,
xi = xi, XiCov = XiCov, Xmean = Xmean, Xstd = Xstd, FitPred = data.frame(rho0,
PILow, PIHig, X0)))
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.