Description Usage Arguments Details Value Author(s) Examples
View source: R/PoissonRegOveDis.R
This is the main file which incorporates other functions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
daycutpred |
threshold for prediction |
maxday |
maximum day for the prediction |
ordfit |
the order of polynomial of Poisson regression |
DayEffect |
day effect |
Country |
country name |
xival |
over-dispersion parameter, xi |
dat |
data |
alpha |
alpha |
yhighval |
graphical parameter |
targetval |
graphical parameter |
LegPos |
graphical parameter |
ToPlot |
plot or not |
Okay
list
E. A. Pena
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (daycutpred = 137, maxday = 154, ordfit = 5, DayEffect = TRUE,
Country = "USA", xival = NULL, dat = NULL, alpha = 0.05,
yhighval = NULL, targetval = 1e+05, LegPos = c("topright",
"left"), ToPlot = TRUE)
{
if (is.null(dat)) {
countrydata = UpdateToday()
}
else {
countrydata = dat
}
dat = AnalysisByCountry2(Country, alldata = countrydata)
daynum = dat$daynum
deaths = dat$dailydeaths
cumdeaths = dat$cumdeaths
DateRep = dat$DateRep
close.screen(all.screens = T)
daynumc = daynum - daynum[1]
X = NULL
collab = NULL
for (j in 0:ordfit) {
X = cbind(X, daynumc^j)
collab = c(collab, paste("DayNum", j))
}
colnames(X) = collab
if (DayEffect) {
dayclass = daynum%%7
dayclass = factor(dayclass, levels = as.character(0:6),
labels = c("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"))
ll = length(dayclass)
desmat = model.matrix(~dayclass)[, -1]
daylab = c("Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday")
X = cbind(X, desmat)
colnames(X) = c(collab, daylab)
}
inpred = (daynum <= daycutpred)
numdaysused = sum(inpred)
Y = deaths[inpred]
X = X[inpred, ]
X0 = NULL
dayspred = daynum[1]:maxday
dayspredc = dayspred - daynum[1]
for (j in 0:ordfit) {
X0 = cbind(X0, dayspredc^j)
}
if (DayEffect) {
dayspredclass = as.factor(dayspred%%7)
dayspredclass = factor(dayspredclass, levels = 0:6, labels = c("Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday"))
ll = length(dayspredclass)
desmat = model.matrix(~dayspredclass)[, -1]
X0 = cbind(X0, desmat)
}
numdaystopred = maxday - daycutpred
if (numdaystopred == 0) {
alphaeff = alpha
}
else {
alphaeff = 1 - (1 - alpha)^(1/numdaystopred)
}
out = OveDisPoiReg(Y, X, X0, alpha = alphaeff, xival = xival)
outglm = out$outglm
outglmsumm = out$outglmsumm
thetahat = out$theta
xihat = out$xi
XiCov = out$XiCov
Xmean = out$Xmean
Xstd = out$Xstd
FitPred = out$FitPred[, 1:3]
if (is.null(yhighval)) {
yhighval = max(c(deaths, FitPred[, 3]))
}
if (ToPlot) {
plot(NULL, NULL, xlim = c(daynum[1], maxday), ylim = c(0,
yhighval), xlab = "Day Number Since 12/31/2019",
ylab = "Daily Deaths", main = paste("Daily Deaths due to Covid-19 in ",
Country))
points(daynum[inpred], Y, col = "black", lwd = 3)
matlines(dayspred, FitPred, col = c("blue", rep("red",
2)), lty = 1, pch = 1, lwd = 3)
points(daynum[(!inpred) & (daynum <= maxday)], deaths[(!inpred) &
(daynum <= maxday)], col = "red", lwd = 3)
abline(v = daycutpred, col = "black", lwd = 2)
abline(v = maxday, col = "green", lwd = 2)
}
lendayspred = length(dayspred)
cumdeathspred = rep(0, lendayspred)
cumdeathspredlow = rep(0, lendayspred)
cumdeathspredhig = rep(0, lendayspred)
for (i in 1:lendayspred) {
cumdeathspred[i] = sum(FitPred[1:i, 1])
cumdeathspredlow[i] = sum(FitPred[1:i, 2])
cumdeathspredhig[i] = sum(FitPred[1:i, 3])
}
if (daycutpred < maxday) {
daysahead = (daycutpred + 1):maxday
lendaysahead = length(daysahead)
lennow = length(daynum[daynum <= daycutpred])
currentval = cumdeaths[lennow]
cumdeathspredahead = rep(currentval, lendaysahead)
cumdeathspredaheadlow = rep(currentval, lendaysahead)
cumdeathspredaheadhig = rep(currentval, lendaysahead)
for (i in 1:lendaysahead) {
cumdeathspredahead[i] = cumdeathspredahead[i] + sum(FitPred[(lennow +
1):(lennow + i), 1])
cumdeathspredaheadlow[i] = cumdeathspredaheadlow[i] +
sum(FitPred[(lennow + 1):(lennow + i), 2])
cumdeathspredaheadhig[i] = cumdeathspredaheadhig[i] +
sum(FitPred[(lennow + 1):(lennow + i), 3])
}
maxy = max(cumdeathspredaheadhig)
}
else {
maxy = max(cumdeaths[inpred])
}
if (ToPlot) {
scan()
plot(NULL, NULL, xlim = range(dayspred), ylim = c(0,
maxy), xlab = "Day Number Since 12/31/2019", ylab = "Cumulative Deaths",
main = paste("Cumulative Deaths Due to Covid-19 in ",
Country))
lines(dayspred, cumdeathspred, type = "l", col = c("blue"),
lty = 1, pch = 1, lwd = 3)
points(daynum[inpred], cumdeaths[inpred], col = "black",
lwd = 3)
points(daynum[(!inpred) & (daynum <= maxday)], cumdeaths[(!inpred) &
(daynum <= maxday)], col = "red", lwd = 3)
if (daycutpred < maxday) {
matlines(daysahead, cbind(cumdeathspredaheadlow,
cumdeathspredaheadhig), col = "magenta", lty = 1,
pch = 2, lwd = 3)
}
abline(v = daycutpred, col = "black", lwd = 2)
abline(v = maxday, col = "green", lwd = 2)
}
summpreds = NULL
if (daycutpred < maxday) {
summpreds = data.frame(daynum = daysahead, Pred = cumdeathspredahead,
PILow = cumdeathspredaheadlow, PIHig = cumdeathspredaheadhig)
}
return(list(Country = Country, dat = dat, outglm = outglm,
outglmsumm = outglmsumm, daycutpred = daycutpred, numdaysused = numdaysused,
maxday = maxday, numdaystopred = numdaystopred, ordfit = ordfit,
alpha = alpha, alphaeff = alphaeff, thetahat = thetahat,
xihat = xihat, XiCov = XiCov, Xmean = Xmean, Xstd = Xstd,
summpreds = summpreds))
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.