Description Usage Arguments Value Examples
Develop mediation models from driver, target and mediator
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## S3 method for class 'mediation_test'
plot(x, ...)
## S3 method for class 'mediation_test'
autoplot(x, ...)
ggplot_mediation_test(x, type = c("pos_lod", "pos_pvalue", "pvalue_lod",
"alleles", "mediator"), main = params$target, maxPvalue = 0.1,
local_only = FALSE, significant = TRUE, lod = TRUE,
target_index = NULL, ...)
mediation_test(target, mediator, driver, annotation = NULL,
covar_tar = NULL, covar_med = NULL, kinship = NULL,
driver_med = NULL, intcovar = NULL, test = c("wilcoxon",
"binomial", "joint", "normal"), fitFunction = fitDefault,
facet_name = "chr", index_name = "pos", ...)
|
... |
additional parameters |
target |
vector or 1-column matrix with target values |
mediator |
matrix of mediators |
driver |
vector or matrix with driver values |
annotation |
A data frame with mediators' annotation with columns for 'facet_name' and 'index_name' |
covar_tar |
optional covariates for target |
covar_med |
optional covariates for mediator |
kinship |
optional kinship matrix among individuals |
driver_med |
optional driver matrix for mediators |
intcovar |
optional interactive covariates (assumed same for 'mediator' and 'target') |
test |
Type of CMST test. |
fitFunction |
function to fit models with driver, target and mediator |
facet_name |
name of facet column (default 'chr') |
index_name |
name of index column (default 'pos') |
List with elements: - best best fit table - test causal test results in table - driver list of driver names for target and mediator(s) - normF Frobenius norm if using both target and mediator drivers - params list of parameter settings for use by summary and plot methods
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | data(Tmem68)
target <- Tmem68$target
# Reconstruct 8-allele genotype probabilities.
driver <- cbind(A = 1 - apply(Tmem68$qtl.geno, 1, sum), Tmem68$qtl.geno)
rownames(driver) <- rownames(Tmem68$qtl.geno)
# Find mediators with significant effect
med_lod <- mediator_lod(mediator = Tmem68$mediator,
driver = driver,
annotation = Tmem68$annotation,
covar_med = Tmem68$covar)
med_signif <- med_lod$id[med_lod$lod >= 5]
# Add info column.
med_lod$info <- paste("chr =", med_lod$chr)
med_test <- mediation_test(target = target,
mediator = Tmem68$mediator[, med_signif, drop = FALSE],
driver = driver,
annotation = med_lod,
covar_tar = Tmem68$covar,
covar_med = Tmem68$covar)
summary(med_test)
ggplot2::autoplot(med_test)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.