mediation_test: Develop mediation models from driver, target and mediator

Description Usage Arguments Value Examples

Description

Develop mediation models from driver, target and mediator

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## S3 method for class 'mediation_test'
plot(x, ...)

## S3 method for class 'mediation_test'
autoplot(x, ...)

ggplot_mediation_test(x, type = c("pos_lod", "pos_pvalue", "pvalue_lod",
  "alleles", "mediator"), main = params$target, maxPvalue = 0.1,
  local_only = FALSE, significant = TRUE, lod = TRUE,
  target_index = NULL, ...)

mediation_test(target, mediator, driver, annotation = NULL,
  covar_tar = NULL, covar_med = NULL, kinship = NULL,
  driver_med = NULL, intcovar = NULL, test = c("wilcoxon",
  "binomial", "joint", "normal"), fitFunction = fitDefault,
  facet_name = "chr", index_name = "pos", ...)

Arguments

...

additional parameters

target

vector or 1-column matrix with target values

mediator

matrix of mediators

driver

vector or matrix with driver values

annotation

A data frame with mediators' annotation with columns for 'facet_name' and 'index_name'

covar_tar

optional covariates for target

covar_med

optional covariates for mediator

kinship

optional kinship matrix among individuals

driver_med

optional driver matrix for mediators

intcovar

optional interactive covariates (assumed same for 'mediator' and 'target')

test

Type of CMST test.

fitFunction

function to fit models with driver, target and mediator

facet_name

name of facet column (default 'chr')

index_name

name of index column (default 'pos')

Value

List with elements: - best best fit table - test causal test results in table - driver list of driver names for target and mediator(s) - normF Frobenius norm if using both target and mediator drivers - params list of parameter settings for use by summary and plot methods

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
data(Tmem68)
 
target <- Tmem68$target

# Reconstruct 8-allele genotype probabilities.
driver <- cbind(A = 1 - apply(Tmem68$qtl.geno, 1, sum), Tmem68$qtl.geno)
rownames(driver) <- rownames(Tmem68$qtl.geno)

# Find mediators with significant effect
med_lod <- mediator_lod(mediator = Tmem68$mediator,
                        driver = driver,
                        annotation = Tmem68$annotation,
                        covar_med = Tmem68$covar)
med_signif <- med_lod$id[med_lod$lod >= 5]
# Add info column.
med_lod$info <- paste("chr =", med_lod$chr)

med_test <- mediation_test(target = target,
                      mediator = Tmem68$mediator[, med_signif, drop = FALSE],
                      driver = driver,
                      annotation = med_lod,
                      covar_tar = Tmem68$covar,
                      covar_med = Tmem68$covar)
summary(med_test)
ggplot2::autoplot(med_test)

fboehm/qtl2mediate documentation built on June 18, 2019, 8:27 p.m.