gs_heatmap | R Documentation |
Plot a heatmap for the selected gene signature on the provided data, with the possibility to compactly display also DE only genes
gs_heatmap(
se,
res_de,
res_enrich,
annotation_obj = NULL,
gtl = NULL,
geneset_id = NULL,
genelist = NULL,
FDR = 0.05,
de_only = FALSE,
cluster_rows = TRUE,
cluster_columns = FALSE,
center_mean = TRUE,
scale_row = FALSE,
winsorize_threshold = NULL,
anno_col_info = NULL,
plot_title = NULL,
...
)
se |
A |
res_de |
A |
res_enrich |
A |
annotation_obj |
A |
gtl |
A |
geneset_id |
Character specifying the gene set identifier to be plotted |
genelist |
A vector of character strings, specifying the identifiers
contained in the row names of the |
FDR |
Numeric value, specifying the significance level for thresholding adjusted p-values. Defaults to 0.05. |
de_only |
Logical, whether to include only differentially expressed genes in the plot |
cluster_rows |
Logical, determining if rows should be clustered, as
specified by |
cluster_columns |
Logical, determining if columns should be clustered, as
specified by |
center_mean |
Logical, whether to perform mean centering on the row-wise |
scale_row |
Logical, whether to standardize by row the expression values |
winsorize_threshold |
Numeric value, to be applied as value to winsorize
the extreme values of the heatmap. Should be a positive number. Defaults to
NULL, which corresponds to not applying any winsorization. Suggested values:
enter 2 or 3 if using row-standardized values ( |
anno_col_info |
A character vector of names in |
plot_title |
Character string, to specify the title of the plot,
displayed over the heatmap. If left to |
... |
Additional arguments passed to other methods, e.g. in the call to
|
A plot returned by the ComplexHeatmap::Heatmap()
function
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
vst_macrophage <- vst(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
gs_heatmap(vst_macrophage,
res_de,
res_enrich,
anno_df,
geneset_id = res_enrich$gs_id[1],
cluster_columns = TRUE,
anno_col_info = "condition"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.