Description Usage Arguments Value Author(s) References See Also Examples
usktest
is a function used to do the Scott-Knott
cluster analysis (1974) for unbalanced designs proposed at 2017 (CONRADO, T. V; FERREIRA, D. F.; SCAPIM, C. A.; MALUF, W. R.).
To learn more, see the article.
1 |
formula |
at the moment, this package only does the Unbalanced Scott-Knott for single factor analysis of variance, so your 'formula' must be |
dataset |
an indication to the database being used. |
alpha |
type I error the researcher can accept (the default is 0.05). |
ANOVA |
if TRUE (the default), print an ANOVA table. |
If ANOVA=TRUE
, this function returns the ANOVA table and the Scott-Knott table that are a data.frame
including 5 columns:
'treatments
': the name of the 'treatments' parameter.
group
: which group the treatment was classified.
mean
: average value of 'observation' for each treatment.
min
: lowest value of 'observation' for each treatment.
max
: higher value of 'observation' for each treatment.
Felipe Ferreira felipe179971@hotmail.com
CONRADO, T. V; FERREIRA, D. F.; SCAPIM, C. A.; MALUF, W. R. (2017) Adjusting the Scott-Knott cluster analyses for unbalanced designs.
For graphics: plot_usk
or plotly_usk
. See also the packages ScottKnott, ScottKnottESD and multcomp.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | set.seed(3)
taus=c(4,4,-4,-4,9,-9)
Tratamento<-as.factor(rep(c(paste("trat",seq(1:length(taus)))),3))
erro<-rnorm(3*length(taus),0,1)
y<-2+taus+erro
y[round(runif(1,min=1,max=length(y)),0)]<-NA
dados<-data.frame(y,Tratamento)
test<-usktest(y~Tratamento,dados)
#ggplot2
plot_usk(test)
#plotly
#plotly_usk(test)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.