rm(list = ls())
library(raster)
library(reshape2)
library(dplyr)
library(ggplot2)
library(tidyr)
########################################################################################
ED_REG_LATMIN = -19.5
ED_REG_LATMAX = 13.5
ED_REG_LONMIN = -84.5
ED_REG_LONMAX = -30.5
########################################################################################
# LPJ
scenarios <- c("output_mean","output_max","output_min")
soil.scenarios.name <- c("SoilGrids_mean","SoilGrids_max","SoilGrids_min")
var.names <- c("GPP","NPP","LAI","biomass","fsw","AGB","soilC") # ED2
vars.LPJ <- c("agpp.out","anpp.out","lai.out","cpool.out","wscal.out","cpool.out","cpool.out")
directory <- "/data/gent/vo/000/gvo00074/SoilSens_output_LPJGUESS/"
df.all.LPJ <- data.frame()
for (isoil in seq(1,length(scenarios))){
print(soil.scenarios.name[isoil])
for (ivar in seq(1,length(vars.LPJ))){
print(paste0("- ",var.names[ivar]))
file.in <- file.path(directory,paste0("historical_",scenarios[isoil]),vars.LPJ[ivar])
if (!file.exists(file.in)){
next()
}
if (vars.LPJ[ivar] == "cpool.out" & var.names[ivar] == "soilC"){
data <- read.table(file.in,header =TRUE,stringsAsFactors=FALSE) %>%
dplyr::select(c(Lon,Lat,Year,LitterC,SoilC)) %>% filter(Year == 2010) %>% mutate(soilC = LitterC + SoilC) %>%
rename(lat = Lat,
lon = Lon,
value = soilC) %>% dplyr::select(lat,lon,value)
} else if (vars.LPJ[ivar] == "cpool.out" & var.names[ivar] == "AGB"){
data <- read.table(file.in,header =TRUE,stringsAsFactors=FALSE) %>%
dplyr::select(c(Lon,Lat,Year,VegC)) %>% filter(Year == 2010) %>% mutate(AGB = 0.7*VegC) %>%
rename(lat = Lat,
lon = Lon,
value = AGB) %>% dplyr::select(lat,lon,value)
} else if (vars.LPJ[ivar] == "cpool.out"){
data <- read.table(file.in,header =TRUE,stringsAsFactors=FALSE) %>%
dplyr::select(c(Lon,Lat,Year,VegC)) %>% filter(Year == 2010) %>%
rename(lat = Lat,
lon = Lon,
value = VegC) %>% dplyr::select(lat,lon,value)
} else if (vars.LPJ[ivar] == "wscal.out"){
data <- read.table(file.in,header = TRUE,stringsAsFactors = FALSE) %>%
filter(Year == 2010)
data.wscal <- data %>% dplyr::select(-c(Lon,Lat,Year))
lai <- read.table(file.path(directory,paste0("historical_",scenarios[isoil]),"lai.out"),header = TRUE,stringsAsFactors = FALSE) %>%
filter(Year == 2010) %>% dplyr::select(-c(Lon,Lat,Year,Total))
data <- data %>% mutate(value = rowSums(lai*data.wscal)/rowSums(lai)) %>%
rename(lon = Lon,lat = Lat) %>%
dplyr::select(c(lat,lon,value))
} else{
data <- read.table(file.in,header =TRUE,stringsAsFactors=FALSE) %>%
dplyr::select(c(Lon,Lat,Year,Total)) %>% filter(Year == 2010) %>%
rename(lat = Lat,
lon = Lon,
value = Total) %>% dplyr::select(lat,lon,value)
}
df.all.LPJ <- bind_rows(list(df.all.LPJ,
data %>% mutate(scenario = soil.scenarios.name[isoil],
variable = var.names[ivar])))
}
}
saveRDS(df.all.LPJ,file = "./Outputs_LPJ.RDS")
# scp /home/femeunier/Documents/projects/SoilSensitivity/scripts/analyze_OP_LPJ.R hpc:/kyukon/data/gent/vo/000/gvo00074/felicien/R/
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.