rm(list = ls())
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(ggplot2)
library(dplyr)
library(viridis)
library(tidyr)
library(SoilSensitivity)
system2("rsync",paste("-avz",
"hpc:/data/gent/vo/000/gvo00074/felicien/R/status.all.RDS",
"/home/femeunier/Documents/projects/SoilSensitivity/outputs/"))
df <- readRDS(file = "/home/femeunier/Documents/projects/SoilSensitivity/outputs/status.all.RDS")
ED_REG_LATMIN = -19.5
ED_REG_LATMAX = 13.5
ED_REG_LONMIN = -84.5
ED_REG_LONMAX = -30.5
GRID_RES = 1
world <- ne_countries(scale = "medium", returnclass = "sf")
ggplot(data = df) +
geom_raster(aes(x=lon, y = lat, fill = as.factor(status)),alpha = 0.3) +
geom_sf(data = world,fill = NA) +
coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
labs(x = "",y = "") +
facet_wrap(~ scenario) +
theme_bw()
df %>% group_by(scenario,status) %>% summarise(N = length(lat))
df %>% group_by(status) %>% summarise(N = length(lat))
ggplot(data = df %>% filter(scenario == "SoilGrids_mean")) +
geom_raster(aes(x=lon, y = lat, fill = final.year),alpha = 0.3) +
geom_sf(data = world,fill = NA) +
coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
labs(x = "",y = "") +
theme_bw()
df %>% group_by(scenario) %>% summarise(fyear = mean(final.year,na.rm = TRUE),
fyear.m = median(final.year,na.rm = TRUE),
fyear.min = min(final.year,na.rm = TRUE),
fyear.max = max(final.year,na.rm = TRUE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.