rm(list = ls())
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(ggplot2)
library(dplyr)
library(viridis)
library(tidyr)
library(SoilSensitivity)
library(raster)
library(wesanderson)
ED_REG_LATMIN = -19.5
ED_REG_LATMAX = 13.5
ED_REG_LONMIN = -84.5
ED_REG_LONMAX = -30.5
GRID_RES = 1
world <- ne_countries(scale = "medium", returnclass = "sf")
###########################################################################################################################################
# ORCHIDEE
system2("rsync",paste("-avz",
"hpc:/data/gent/vo/000/gvo00074/felicien/R/Outputs_ORCHIDEE.RDS",
"/home/femeunier/Documents/projects/SoilSensitivity/outputs/"))
tempDF <- readRDS(file = "/home/femeunier/Documents/projects/SoilSensitivity/outputs/Outputs_ORCHIDEE.RDS")
veg.frac <- tempDF %>% filter(variable == "veg.cover")
other.vars <- tempDF %>% filter(variable != "veg.cover")
all.vars <- other.vars %>% left_join(veg.frac %>% rename(veg_cover = value) %>% dplyr::select(lon,lat,pft,month,veg_cover,year,scenario),
by = c("lon","lat","pft","month","year","scenario"))
ORCHIDEE <- all.vars %>%
group_by(lon,lat,scenario,pft,variable) %>%
summarise(value = mean(value),
veg_cover = mean(veg_cover),
.groups = "keep") %>%
group_by(lon,lat,scenario,variable) %>%
summarise(value = weighted.mean(value,veg_cover),
.groups = "keep") %>%
filter(lat<=ED_REG_LATMAX,
lat>=ED_REG_LATMIN,
lon<=ED_REG_LONMAX,
lon>=ED_REG_LONMIN)
# ggplot(data = ORCHIDEE %>% filter(variable == "AGB")) +
# geom_raster(aes(x=lon, y = lat, fill = value),alpha = 0.3) +
# geom_sf(data = world,fill = NA) +
# coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
# scale_fill_gradient2(low = "darkred",mid = "darkgrey",high = "darkgreen",na.value = "white") +
# labs(x = "",y = "") +
# facet_wrap(~ scenario) +
# theme_bw()
###########################################################################################################################################
# LPJ
system2("rsync",paste("-avz",
"hpc:/data/gent/vo/000/gvo00074/felicien/R/Outputs_LPJ.RDS",
"/home/femeunier/Documents/projects/SoilSensitivity/outputs/"))
LPJ <- readRDS(file = "/home/femeunier/Documents/projects/SoilSensitivity/outputs/Outputs_LPJ.RDS") %>%
filter(lat<=ED_REG_LATMAX,
lat>=ED_REG_LATMIN,
lon<=ED_REG_LONMAX,
lon>=ED_REG_LONMIN)
# ggplot(data = LPJ %>% filter(variable == "AGB")) +
# geom_raster(aes(x=lon, y = lat, fill = value),alpha = 0.3) +
# geom_sf(data = world,fill = NA) +
# coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
# scale_fill_gradient2(low = "darkred",mid = "darkgrey",high = "darkgreen",na.value = "white") +
# labs(x = "",y = "") +
# facet_wrap(~ scenario) +
# theme_bw()
###########################################################################################################################################
# ED2
system2("rsync",paste("-avz",
"hpc:/data/gent/vo/000/gvo00074/felicien/R/Outputs_ED2.RDS",
"/home/femeunier/Documents/projects/SoilSensitivity/outputs/"))
ED2 <- readRDS(file = "/home/femeunier/Documents/projects/SoilSensitivity/outputs/Outputs_ED2.RDS") %>%
dplyr::select("lat","lon","scenario","GPP","NPP","LAI","biomass","fsw","AGB","soilC") %>% pivot_longer(cols = -c("lat","lon","scenario"),
names_to = "variable",
values_to = "value")
# ggplot(data = ED2 %>% filter(variable == "AGB")) +
# geom_raster(aes(x=lon, y = lat, fill = value),alpha = 0.3) +
# geom_sf(data = world,fill = NA) +
# coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
# scale_fill_gradient2(low = "darkred",mid = "darkgrey",high = "darkgreen",na.value = "white") +
# labs(x = "",y = "") +
# facet_wrap(~ scenario) +
# theme_bw()
###########################################################################################################################################
# All
all.models <- bind_rows(list(ORCHIDEE %>% mutate(model = "ORCHIDEE") %>% mutate(lat = lat + 0.25,
lon = lon - 0.25),
ED2 %>% mutate(model = "ED2"),
LPJ %>% mutate(model = "LPJ-GUESS")))
ggplot(data = all.models %>% filter(variable == "soilC")) +
geom_raster(aes(x=lon, y = lat, fill = value)) +
geom_sf(data = world,fill = NA) +
coord_sf(xlim = c(-84.5, -30.5), ylim = c(-19.5, 15.5), expand = FALSE) +
scale_fill_gradient2(low = "darkred",mid = "darkgrey",high = "darkgreen",na.value = "white") +
labs(x = "",y = "") +
facet_grid(model ~ scenario) +
theme_bw()
saveRDS(all.models,file = "./outputs/OPhistorical.RDS")
ggplot(data = all.models %>% filter(variable == "soilC")) +
geom_boxplot(aes(y = value, x = model, fill = scenario)) +
theme_bw()
all.models %>% filter(variable == "soilC") %>% group_by(model, scenario) %>% summarise(median(value,na.rm = TRUE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.