# SEMgraph library
# Copyright (C) 2019-2021 Fernando Palluzzi; Mario Grassi
# e-mail: <fernando.palluzzi@gmail.com>
# University of Pavia, Department of Brain and Behavioral Sciences
# Via Bassi 21, 27100 Pavia, Italy
# SEMgraph is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# SEMgraph is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# -------------------------------------------------------------------- #
#' @title Reactome pathways collection
#'
#' @description Collection of Reactome signaling pathways extracted using
#' the \code{graphite} R package (update: April, 2020).
#' @name reactome.pathways
#' @usage reactome.pathways
#' @docType data
#' @format
#' "reactome.pathways" is a list of 1641 Reactome pathways, stored as
#' igraph objects.
#' @source \url{https://reactome.org}
#' @references
#'
#' Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A,
#' Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M,
#' Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J,
#' Wu G, Stein L, Hermjakob H, D'Eustachio P.
#' The reactome pathway knowledgebase.
#' Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503.
#' <doi:10.1093/nar/gkz1031. PubMed PMID: 31691815.>
#'
#' Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths:
#' anempirical gene set approach exploiting pathway topology.
#' Nucleic Acids Res. 41(1):e19.
#' <https://doi.org/10.1093/nar/gks866>
#'
#' @examples
#'
#' \dontrun{
#'
#' # Number of nodes per pathway
#' react.nodes <- unlist(lapply(reactome.pathways, vcount))
#' names(react.nodes) <- NULL
#' # Number of edges per pathway
#' react.edges <- unlist(lapply(reactome.pathways, ecount))
#' names(react.edges) <- NULL
#' # Gene list per pathway
#' react.genes <- unlist(lapply(reactome.pathways, function(x) V(x)$name))
#' quantile(react.nodes)
#' quantile(react.edges)
#' length(unique(react.genes)) # Number of unique genes within the dataset
#'
#' # Loading breast cancer KEGG network
#' i <- which(names(reactome.pathways) == "NOTCH4 Intracellular Domain Regulates Transcription")
#' notch4.graph <- reactome.pathways[[i]]
#' summary(notch4.graph)
#' gplot(notch4.graph)
#'
#' }
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.