Description Usage Arguments Value References Examples
The main function for performing dimensional reduction on the preprocessed scRNA-seq data
1 2 3 4 5 6 7 | runFeatureAE(
scDataset,
LTMG_mat = NULL,
hyperParams = list(batch_size = 1L, regu_epochs = 5L, L1 = 0.5, L2 = 0.5, regu_alpha
= 0.9, reduction = "sum"),
hardwareSetup = list(CUDA = F, coresUage = 1L)
)
|
scDataset |
A scDataset object containing scRNA-seq data |
LTMG_mat |
LTMG sparse matrix. If provided, then LTMG regularisation will be applied. Optional. |
hyperParams |
A list of hyperparameter to tune the model. Optional. |
hardwareSetup |
A list of parameters to setup the hardware on which the model runs. Optional. |
A matrix representing the encoded space of the scRNA-seq matrix.
scGNNscRGNet \insertRefLTMGscRGNet \insertReftorchscRGNet \insertRefprogressscRGNet \insertRefmatrixscRGNet
1 2 3 4 5 6 7 8 9 10 11 12 13 | # Example 1:
# Tested examples. Not run for fast package compiling
## Not run:
# Accessing the demo gene_counts_small dataset available with the package
inputCountsPath <- system.file("extdata", "GSE138852_small.csv", package = "scRGNet")
# Preprocess the raw counts
counts <- preprocessCSV(path = inputCountsPath)
ltmg <- runLTMG(counts)
hyperParams <- setHyperParams(regu_epochs = 5L)
hardwareSetup <- setHardware(coresUsage = 1L)
z <- runFeatureAE(scDataset = counts, LTMG_mat = ltmg, hyperParams, hardwareSetup)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.