## interface.mc.R
##
## Copyright (C) 2015 David Bolin
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' Contour maps and contour map quality measures using Monte Carlo samples
#'
#' \code{contourmap.mc} is used for calculating contour maps and quality measures for contour maps based on Monte Carlo samples of a model.
#'
#' @param samples Matrix with model Monte Carlo samples. Each column contains a sample of the model.
#' @param n.levels Number of levels in contour map.
#' @param ind Indices of the nodes that should be analyzed (optional).
#' @param levels Levels to use in contour map.
#' @param type Type of contour map. One of:
#' \itemize{
#' \item{'standard' }{Equidistant levels between smallest and largest value of the posterior mean (default).}
#' \item{'pretty' }{Equally spaced 'round' values which cover the range of the values in the posterior mean.}
#' \item{'equalarea' }{Levels such that different spatial regions are approximately equal in size.}
#' \item{'P0-optimal' }{Levels chosen to maximize the P0 measure.}
#' \item{'P1-optimal' }{Levels chosen to maximize the P1 measure.}
#' \item{'P2-optimal' }{Levels chosen to maximize the P2 measure.}
#' }
#' @param compute A list with quality indices to compute
#' \itemize{
#' \item{'F': }{TRUE/FALSE indicating whether the contour map function should be computed (default TRUE).}
#' \item{'measures': }{A list with the quality measures to compute ("P0", "P1", "P2") or corresponding bounds based only on the marginal probabilities ("P0-bound", "P1-bound", "P2-bound").}
#' }
#' @param alpha Maximal error probability in contour map function (default=0.1).
#' @param verbose Set to TRUE for verbose mode (optional).
#'
#' @return \code{contourmap} returns an object of class "excurobj". This is a list that can contains the following arguments:
#' \item{u }{Contour levels used in the contour map.}
#' \item{n.levels }{The number of contours used.}
#' \item{u.e }{The values associated with the level sets G_k.}
#' \item{G }{A vector which shows which of the level sets G_k each node belongs to.}
#' \item{map }{Representation of the contour map with map[i]=u.e[k] if i is in G_k.}
#' \item{F }{The contour map function (if computed).}
#' \item{M }{Contour avoiding sets (if \code{F} is computed). \eqn{M=-1} for all non-significant nodes and \eqn{M=k} for nodes that belong to \eqn{M_k}.}
#' \item{P0/P1/P2 }{Calculated quality measures (if computed).}
#' \item{P0bound/P1bound/P2bound }{Calculated upper bounds quality measures (if computed).}
#' \item{meta }{A list containing various information about the calculation.}
#' @author David Bolin \email{davidbolin@@gmail.com}
#' @details The contour map is computed for the empirical mean of the samples.
#' See \code{\link{contourmap}} and \code{\link{contourmap.inla}} for further details.
#' @references Bolin, D. and Lindgren, F. (2017) \emph{Quantifying the uncertainty of contour maps}, Journal of Computational and Graphical Statistics, 26:3, 513-524.
#'
#' Bolin, D. and Lindgren, F. (2018), \emph{Calculating Probabilistic Excursion Sets and Related Quantities Using excursions}, Journal of Statistical Software, 86(5), 1--20.
#' @seealso \code{\link{contourmap}}, \code{\link{contourmap.inla}}, \code{\link{contourmap.colors}}
#' @export
#'
#' @examples
#' n = 100
#' Q = Matrix(toeplitz(c(1, -0.5, rep(0, n-2))))
#' mu = seq(-5, 5, length=n)
#' ## Sample the model 100 times (increase for better estimate)
#' X = mu + solve(chol(Q),matrix(rnorm(n=n*100),nrow=n,ncol=100))
#'
#' lp <- contourmap.mc(X,n.levels = 2, compute=list(F=FALSE, measures = c("P1","P2")))
#'
#' #plot contourmap
#' plot(lp$map)
#' #display quality measures
#' c(lp$P1,lp$P2)
contourmap.mc <- function(samples,
n.levels,
ind,
levels,
type = c("standard",
"equalarea",
"P0-optimal",
"P1-optimal",
"P2-optimal"),
compute = list(F=TRUE, measures = NULL),
alpha,
verbose=FALSE)
{
if(missing(samples)){
stop("Must supply samples.")
} else {
samples <- as(samples,"matrix")
}
if(!missing(ind))
ind <- private.as.vector(ind)
mu <- rowMeans(samples)
type <- match.arg(type)
if(missing(alpha) || is.null(alpha)){
alpha = 0.1
}
measure = NULL
if(!is.null(compute$measures))
measure <- match.arg(compute$measures,
c("P0", "P1", "P2"),
several.ok=TRUE)
if(type == 'standard')
{
if(verbose) cat('Creating contour map\n')
lp <- excursions.levelplot(mu=mu,n.levels = n.levels,ind = ind,
levels = levels,equal.area=FALSE)
}
else if(type == 'equalarea')
{
if(verbose) cat('Creating equal area contour map\n')
lp <- excursions.levelplot(mu = mu,n.levels = n.levels,ind = ind,
levels = levels,equal.area=TRUE)
}
else if(type == 'P0-optimal' || type == 'P1-optimal' || type == 'P2-optimal')
{
warning('Pk-optimal contour maps not implemented, using standard.\n')
lp <- excursions.levelplot(mu=mu,n.levels = n.levels,ind = ind,
levels = levels,equal.area=FALSE)
}
F.calculated = FALSE
if(!is.null(measure)){
for( i in 1:length(measure)){
if(measure[i]=="P1") {
if(verbose) cat('Calculating P1-measure\n')
lp$P1 <- Pmeasure.mc(lp=lp,mu=mu,X=samples,ind=ind,type=1)
} else if(measure[i] == "P2") {
if(verbose) cat('Calculating P2-measure\n')
lp$P2 <- Pmeasure.mc(lp=lp,mu=mu,X=samples,ind=ind,type=2)
} else if (measure[i] == "P0") {
if(verbose) cat('Calculating P0-measure and contour map function\n')
p <- contourfunction.mc(lp=lp, mu=mu,X=samples, ind = ind,
alpha=alpha, verbose=verbose)
F.calculated = TRUE
}
}
}
if(!F.calculated){
if(is.null(compute$F) || compute$F){
if(verbose) cat('Calculating contour map function\n')
p <- contourfunction.mc(lp=lp, mu=mu,X=samples, ind = ind,
alpha=alpha, verbose=verbose)
F.calculated = TRUE
}
}
if (missing(ind) || is.null(ind)) {
ind <- seq_len(length(mu))
} else if(is.logical(ind)){
ind <- which(ind)
}
if(F.calculated){
lp$P0 = mean(p$F[ind])
lp$F = p$F
lp$E = p$E
lp$M = p$M
lp$rho = p$rho
} else {
lp$E <- NULL
}
lp$meta <- list(calculation="contourmap",
F.limit=0,
alpha=alpha,
levels=lp$u,
type="!=",
n.iter=dim(samples)[2],
mu.range = range(mu[ind]),
ind = ind)
class(lp) <- "excurobj"
return(lp)
}
#' Simultaneous confidence regions using Monte Carlo samples
#'
#' \code{simconf.mc} is used for calculating simultaneous confidence regions based
#' on Monte Carlo samples. The function returns upper and lower bounds \eqn{a} and
#' \eqn{b} such that \eqn{P(a<x<b) = 1-alpha}.
#'
#' @param samples Matrix with model Monte Carlo samples. Each column contains a sample of the model.
#' @param alpha Error probability for the region.
#' @param ind Indices of the nodes that should be analyzed (optional).
#' @param verbose Set to TRUE for verbose mode (optional).
#'
#' @return An object of class "excurobj" with elements
#' \item{a }{The lower bound.}
#' \item{b }{The upper bound.}
#' \item{a.marginal }{The lower bound for pointwise confidence bands.}
#' \item{b.marginal }{The upper bound for pointwise confidence bands.}
#' @export
#' @details See \code{\link{simconf}} for details.
#' @author David Bolin \email{davidbolin@@gmail.com}
#' @seealso \code{\link{simconf}}, \code{\link{simconf.inla}}
#'
#' @examples
#' ## Create mean and a tridiagonal precision matrix
#' n = 11
#' mu.x = seq(-5, 5, length=n)
#' Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
#' ## Sample the model 100 times (increase for better estimate)
#' X = mu.x + solve(chol(Q.x),matrix(rnorm(n=n*100),nrow=n,ncol=100))
#' ## calculate the confidence region
#' conf = simconf.mc(X,0.2)
#' ## Plot the region
#' plot(mu.x, type="l", ylim=c(-10, 10),
#' main='Mean (black) and confidence region (red)')
#' lines(conf$a, col=2)
#' lines(conf$b, col=2)
simconf.mc <- function(samples,
alpha,
ind,
verbose=FALSE)
{
if(missing(samples))
stop('Must provide matrix with samples')
if(missing(alpha))
stop('Must provide significance level alpha')
if(missing(ind)){
ind = seq_len(dim(samples)[1])
}
a.marg = apply(samples,1,quantile,1,probs=c(alpha/2))
b.marg = apply(samples,1,quantile,1,probs=c(1-alpha/2))
#Simple golden section search
lb = 0
ub = alpha
gr = 2/(sqrt(5) + 1)
x1 = ub - gr*(ub - lb)
x2 = lb + gr*(ub - lb)
f1 = fsamp.opt(x1,samples=samples[ind,], verbose=verbose)
f2 = fsamp.opt(x2,samples=samples[ind,], verbose=verbose)
while (abs(ub - lb) > 1e-4) {
if (f2 < 1-alpha) {
# optimum is to the left of x2
ub = x2
x2 = x1
f2 = f1
x1 = ub- gr*(ub- lb)
f1 = fsamp.opt(x1,samples=samples[ind,], verbose=verbose)
} else {
lb = x1
x1 = x2
f1 = f2
x2 = lb + gr*(ub - lb)
f2 = fsamp.opt(x2,samples=samples[ind,], verbose=verbose)
}
}
rho = (lb + ub)/2
cat(rho)
a = apply(samples,1,quantile,1,probs=c(rho/2))
b = apply(samples,1,quantile,1,probs=c(1-rho/2))
return(list(a = a[ind],
b = b[ind],
a.marginal = a.marg[ind],
b.marginal = b.marg[ind]))
}
#' Excursion sets and contour credible regions using Monte Carlo samples
#'
#' \code{excursions.mc} is used for calculating excursion sets, contour credible
#' regions, and contour avoiding sets based on Monte Carlo samples of models.
#'
#' @param samples Matrix with model Monte Carlo samples. Each column contains a
#' sample of the model.
#' @param alpha Error probability for the excursion set.
#' @param u Excursion or contour level.
#' @param type Type of region:
#' \itemize{
#' \item{'>' }{positive excursions}
#' \item{'<' }{negative excursions}
#' \item{'!=' }{contour avoiding function}
#' \item{'=' }{contour credibility function}}
#' @param rho Marginal excursion probabilities (optional). For contour regions,
#' provide \eqn{P(X>u)}.
#' @param reo Reordering (optional).
#' @param ind Indices of the nodes that should be analysed (optional).
#' @param max.size Maximum number of nodes to include in the set of interest (optional).
#' @param verbose Set to TRUE for verbose mode (optional).
#'
#' @return \code{excursions} returns an object of class "excurobj". This is a list that
#' contains the following arguments:
#' \item{E }{Excursion set, contour credible region, or contour avoiding set.}
#' \item{G }{ Contour map set. \eqn{G=1} for all nodes where the \eqn{mu > u}.}
#' \item{M }{ Contour avoiding set. \eqn{M=-1} for all non-significant nodes.
#' \eqn{M=0} for nodes where the process is significantly below \code{u} and
#' \eqn{M=1} for all nodes where the field is significantly above \code{u}.
#' Which values that should be present depends on what type of set that is calculated.}
#' \item{F }{The excursion function corresponding to the set \code{E} calculated
#' for values up to \code{F.limit}}
#' \item{rho }{Marginal excursion probabilities}
#' \item{mean }{The mean \code{mu}.}
#' \item{vars }{Marginal variances.}
#' \item{meta }{A list containing various information about the calculation.}
#' @export
#' @author David Bolin \email{davidbolin@@gmail.com} and Finn Lindgren
#' \email{finn.lindgren@@gmail.com}
#' @references Bolin, D. and Lindgren, F. (2015) \emph{Excursion and contour
#' uncertainty regions for latent Gaussian models}, JRSS-series B, vol 77, no 1,
#' pp 85-106.
#'
#' Bolin, D. and Lindgren, F. (2018), \emph{Calculating Probabilistic Excursion Sets and Related Quantities Using excursions}, Journal of Statistical Software, vol 86, no 1, pp 1-20.
#' @seealso \code{\link{excursions}}, \code{\link{excursions.inla}}
#' @examples
#' ## Create mean and a tridiagonal precision matrix
#' n = 101
#' mu.x = seq(-5, 5, length=n)
#' Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
#' ## Sample the model 100 times (increase for better estimate)
#' X = mu.x + solve(chol(Q.x),matrix(rnorm(n=n*1000),nrow=n,ncol=1000))
#' ## calculate the positive excursion function
#' res.x = excursions.mc(X,alpha=0.05,type='>',u=0)
#' ## Plot the excursion function and the marginal excursion probabilities
#' plot(res.x$F, type="l",
#' main='Excursion function (black) and marginal probabilites (red)')
#' lines(res.x$rho, col=2)
excursions.mc <- function(samples,
alpha,
u,
type,
rho,
reo,
ind,
max.size,
verbose=FALSE)
{
if(missing(alpha))
stop('Must specify error probability')
if(missing(u))
stop('Must specify level')
mu = rowMeans(samples)
if(missing(type))
stop('Must specify type of excursion set')
if(!missing(ind) && !missing(reo))
stop('Either provide a reordering using the reo argument or provied a set of nodes using the ind argument, both cannot be provided')
F.limit = 1
if(verbose)
cat("Calculate marginals\n")
marg <- excursions.marginals.mc(X=samples, type = type, rho = rho,
mu = mu, u = u)
if (missing(max.size)){
m.size = length(mu)
} else {
m.size = max.size
}
if (!missing(ind)) {
if(is.logical(ind)){
indices = ind
if(missing(max.size)){
m.size = sum(ind)
} else {
m.size = min(sum(ind),m.size)
}
} else {
indices = rep(FALSE,length(mu))
indices[ind] = TRUE
if(missing(max.size)){
m.size = length(ind)
} else {
m.size = min(length(ind),m.size)
}
}
} else {
indices = rep(TRUE,length(mu))
}
if(verbose)
cat("Calculate permutation\n")
if(missing(reo)){
reo <- excursions.permutation(marg$rho, indices, use.camd = FALSE)
}
if(verbose)
cat("Calculate limits\n")
limits <- excursions.setlimits(marg=marg, type=type,u=u,
mu=rep(0,length(mu)),QC=FALSE)
res = mcint(X=samples[reo,],a=limits$a[reo],b=limits$b[reo])
n = length(mu)
ii = which(res$Pv[1:n] > 0)
if (length(ii) == 0) i=n+1 else i=min(ii)
F = Fe = E = G = rep(0,n)
F[reo] = res$Pv
Fe[reo] = res$Ev
ireo = NULL
ireo[reo] = 1:n
ind.lowF = F < 1-F.limit
E[F>1-alpha] = 1
if(type == '=') {
F=1-F
}
if(type == "<") {
G[mu>u] = 1
} else {
G[mu>=u] = 1
}
F[ind.lowF] = Fe[ind.lowF] = NA
M = rep(-1,n)
if (type=="<") {
M[E==1] = 0
} else if (type == ">") {
M[E==1] = 1
} else if (type == "!=" || type == "=") {
M[E==1 & mu>u] = 1
M[E==1 & mu<u] = 0
}
if (missing(ind) || is.null(ind)) {
ind <- seq_len(n)
} else if(is.logical(ind)){
ind <- which(ind)
}
vars <- rowSums((samples-rowMeans(samples))^2)/(dim(samples)[2]-1)
output <- list(F = F,
G = G,
M = M,
E = E,
mean = mu,
vars=vars,
rho=marg$rho,
meta=(list(calculation="excursions",
type=type,
level=u,
F.limit=F.limit,
alpha=alpha,
n.iter=dim(samples)[2],
method='MC',
ind=ind,
reo=reo,
ireo=ireo,
Fe=Fe)))
class(output) <- "excurobj"
output
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.