## code to prepare datasets in this package
library(tidyverse)
library(cfs.misc)
library(lubridate)
# Simulation parameters ----------------------------------------------
simulation_parameters <- list(name = "demo",
sim_type = "deterministic",
reps = 1:1,
random_seed = 1,
water_years = 1997:2011,
chinook_runs = c("Fall", "LateFall", "Spring", "Winter"),
ocean_year_probability = 1)
usethis::use_data(simulation_parameters, overwrite = TRUE)
# Length-weight parameters ----------------------------------------------
# Tiffan et al 2014
length_weight_parameters <- c("a" = 0.000004, "b" = 3.2252)
usethis::use_data(length_weight_parameters, overwrite = TRUE)
# Water year type ----------------------------------------------
water_year_type <- tibble(WaterYear = 1997:2011,
WaterYearType = get_water_year_type(WaterYear))
usethis::use_data(water_year_type, overwrite = TRUE)
# Ocean survival parameters ----------------------------------------------
ocean_survival_parameters <- readRDS("data-raw/OceanSurvivalParameters.rds")
usethis::use_data(ocean_survival_parameters, overwrite = TRUE)
# Telemetry model parameters ----------------------------------------------
# not documented in data.R; maybe ask Von to do that?
telemetry_parameters <- readRDS("data-raw/TelemetryModelParameters.rds")
usethis::use_data(telemetry_parameters, overwrite = TRUE)
# Rearing time parameters ----------------------------------------------
rt_delta <- readRDS("data-raw/RearingTimeParameters_Delta.rds")
rt_yolo <- readRDS("data-raw/RearingTimeParameters_Yolo.rds")
# thresh is the temperature threshold (ÂșC); fish stop rearing on first day with mean temp > thresh
rt_delta[["thresh"]] <- 22
rt_yolo[["thresh"]] <- 22
rearing_time_parameters <- list("Delta" = rt_delta, "Yolo" = rt_yolo)
usethis::use_data(rearing_time_parameters, overwrite = TRUE)
# Rearing survival parameters ----------------------------------------------
# default value of daily rearing survival (under deterministic simulation) and
# lower and upper limits of uniform distribution of daily survival values
rs_delta <- c("survival" = 0.99, "min" = 0.98, "max" = 1)
rs_yolo <- c("min" = 0, "max" = 1, "inflection" = 74, "steepness" = -6)
rearing_survival_parameters <- list("Delta" = rs_delta, "Yolo" = rs_yolo)
usethis::use_data(rearing_survival_parameters, overwrite = TRUE)
# Rearing abundance ----------------------------------------------
rearing_proportion_parameters <- c("min" = 0, "max" = 1,
"inflection" = 100, "steepness" = 15)
usethis::use_data(rearing_proportion_parameters, overwrite = TRUE)
# Growth parameters ----------------------------------------------
# from Perry et al 2015
# b = allometric growth exponent
# d and g = shape parameters of the Ratkowsky model
# TL = lower temperature limit for growth
# TU = upper temperature limit for growth
growth_parameters <- c("b" = 0.338, "d" = 0.415, "g" = 0.315,
"TL" = 1.833, "TU" = 24.918)
usethis::use_data(growth_parameters, overwrite = TRUE)
# Annual abundance ----------------------------------------------
aa <- read_csv("data-raw/AnnualAbundance.csv") %>%
select(Run, WaterYear, Abundance) %>%
mutate(Abundance = round(Abundance)) %>%
spread(key = Run, value = Abundance)
annual_abundance <- list()
for (i in c("Fall", "LateFall", "Spring", "Winter")){
annual_abundance[[i]] <- aa[[i]]
names(annual_abundance[[i]]) <- as.character(aa[["WaterYear"]])
}
usethis::use_data(annual_abundance, overwrite = TRUE)
# Water year dates and model days ---------------------------------------------
# the model day is simply a count from first date (1996-10-02) to last date (1997-09-30)
dates_df <- tibble(Date = seq(ymd("1996-10-02"), ymd("2011-09-30"), by = "days"),
ModelDay = 1:length(Date),
WaterYear = water_year(Date))
wy_model_days <- list()
wy_dates <- list()
for (i in unique(dates_df$WaterYear)){
tmp <- filter(dates_df, WaterYear == i)
wy_char <- as.character(i)
wy_model_days[[wy_char]] <- tmp[["ModelDay"]]
wy_dates[[wy_char]] <- tmp[["Date"]]
}
usethis::use_data(wy_model_days, overwrite = TRUE)
usethis::use_data(wy_dates, overwrite = TRUE)
# Flood duration ----------------------------------------------
fd <- read_csv("data-raw/FloodDuration.csv")
# model simulates one water-year/run combination at a time
# changing input data to make value lookups based on water years
flood_duration <- list()
for (i in names(wy_model_days)){
indices <- wy_model_days[[i]]
flood_duration[[i]] <- fd[["FloodDuration"]][indices]
}
usethis::use_data(flood_duration, overwrite = TRUE)
# Floodplain temperature difference ----------------------------------------------
dates_diff <- tibble(Date = seq(ymd("1996-10-02"), ymd("2011-09-30"), by = "days"),
DOY = yday(Date),
WaterYear = water_year(Date)) %>%
left_join(readRDS("data-raw/FloodplainTemperatureDifference.rds"))
ftd <- list()
for (i in unique(dates_diff$WaterYear)){
tmp <- filter(dates_diff, WaterYear == i)
ftd[[as.character(i)]] <- tmp[["Diff"]]
}
# default is to use the same temperature difference for Yolo and Delta
floodplain_temperature_difference <- list("Yolo" = ftd,
"Delta" = ftd)
usethis::use_data(floodplain_temperature_difference, overwrite = TRUE)
# Toe Drain temperature ----------------------------------------------
td <- readRDS("data-raw/ToeDrainTemp.rds") %>%
arrange(date) %>%
mutate(WaterYear = water_year(date))
toe_drain_temperature <- list()
for (i in unique(td$WaterYear)){
tmp <- filter(td, WaterYear == i)
toe_drain_temperature[[as.character(i)]] <- tmp[["temp"]]
}
usethis::use_data(toe_drain_temperature, overwrite = TRUE)
# Freeport temperature ----------------------------------------------
fpt <- readRDS("data-raw/FreeportTemp.rds") %>%
arrange(date) %>%
mutate(WaterYear = water_year(date))
freeport_temperature <- list()
for (i in unique(fpt$WaterYear)){
tmp <- filter(fpt, WaterYear == i)
freeport_temperature[[as.character(i)]] <- tmp[["temp"]]
}
usethis::use_data(freeport_temperature, overwrite = TRUE)
# Floodplain temperature ----------------------------------------------
load("data/floodplain_temperature_difference.rda")
load("data/freeport_temperature.rda")
load("data/toe_drain_temperature.rda")
floodplain_temperature <- list("Yolo" = Map(function(x, y) x + y,
toe_drain_temperature, floodplain_temperature_difference[["Yolo"]]),
"Delta" = Map(function(x, y) x + y,
freeport_temperature, floodplain_temperature_difference[["Delta"]]))
usethis::use_data(floodplain_temperature, overwrite = TRUE)
# Entry timing ----------------------------------------------
klt <- readRDS("data-raw/KnightsLandingTiming.rds")
knights_landing_timing <- list()
for (i in unique(klt$WaterYear)){
tmp <- filter(klt, WaterYear == i)
for (j in c("Fall", "LateFall", "Spring", "Winter")){
knights_landing_timing[[j]][[as.character(i)]] <- tmp[[j]]
}
}
usethis::use_data(knights_landing_timing, overwrite = TRUE)
# Fork length ----------------------------------------------
klfl <- readRDS("data-raw/KnightsLandingFLParams.rds")
knights_landing_fl_params <- list()
for (i in unique(klfl$WaterYear)){
wy_char <- as.character(i)
for (j in c("Fall", "LateFall", "Spring", "Winter")){
tmp <- filter(klfl, WaterYear == i & Run == j)
knights_landing_fl_params[[j]][[wy_char]][["MeanLog"]] <- tmp[["ImputeMeanLog"]]
knights_landing_fl_params[[j]][[wy_char]][["SDLog"]] <- tmp[["ImputeSDLog"]]
}
}
usethis::use_data(knights_landing_fl_params, overwrite = TRUE)
# Freeport flow and Proportion entrained at Fremont Weir ----------------------------------------------
exg_flow <- read_csv(file.path("data-raw", "ExgFlow.csv")) %>%
filter(Date > ymd("1996-10-01") & Date < ymd("2011-10-01")) %>%
arrange(Date) %>%
mutate(WaterYear = water_year(Date))
fremont_weir_proportion <- list()
freeport_flow <- list()
for (i in unique(exg_flow$WaterYear)){
tmp <- filter(exg_flow, WaterYear == i)
wy_char <- as.character(i)
fremont_weir_proportion[[wy_char]] <- tmp$PropFremont
freeport_flow[[wy_char]] <- tmp$Freeport
}
usethis::use_data(fremont_weir_proportion, overwrite = TRUE)
usethis::use_data(freeport_flow, overwrite = TRUE)
# Inundated area ----------------------------------------------
flooded <- read_csv("data-raw/Inundated_sqkm_long.csv") %>%
filter(Scenario == "Exg" & Date < ymd("2011-10-01")) %>%
arrange(Date)
inundated_sqkm <- list()
for (i in unique(flooded$WaterYear)){
tmp <- filter(flooded, WaterYear == i)
inundated_sqkm[[as.character(i)]] <- tmp$Inundated_sqkm
}
# loooking at the inundated area
str(inundated_sqkm)
# the thing that jumps out is how there is no inundated on Oct 1st of any year
# I distinctly remember that the model started on Oct 2nd in WY1997
# but it's fuzzy whether this strange choice Oct 2nd was used for every year
# nonetheless, I'm moving forward b/c there is very little (no?) entrainment at this time of year
usethis::use_data(inundated_sqkm, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.